
www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr 4
Cookbook

Over 100 recipes to make Apache Solr faster,
more reliable, and return better results

Rafał Kuć

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr 4 Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2011

Second edition: January 2013

Production Reference: 1150113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-132-5

www.packtpub.com

Cover Image by J. Blaminsky (milak6@wp.pl)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Rafał Kuć

Reviewers
Ravindra Bharathi

Marcelo Ochoa

Vijayakumar Ramdoss

Acquisition Editor
Andrew Duckworth

Lead Technical Editor
Arun Nadar

Technical Editors
Jalasha D'costa

Charmaine Pereira

Lubna Shaikh

Project Coordinator
Anurag Banerjee

Proofreaders
Maria Gould

Aaron Nash

Indexer
Tejal Soni

Production Coordinators
Manu Joseph

Nitesh Thakur

Cover Work
Nitesh Thakur

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Rafał Kuć is a born team leader and software developer. Currently working as a Consultant
and a Software Engineer at Sematext Inc, where he concentrates on open source technologies
such as Apache Lucene and Solr, ElasticSearch, and Hadoop stack. He has more than
10 years of experience in various software branches, from banking software to e-commerce
products. He is mainly focused on Java, but open to every tool and programming language
that will make the achievement of his goal easier and faster. Rafał is also one of the founders
of the solr.pl site, where he tries to share his knowledge and help people with their
problems with Solr and Lucene. He is also a speaker for various conferences around the
world such as Lucene Eurocon, Berlin Buzzwords, and ApacheCon.

Rafał began his journey with Lucene in 2002 and it wasn't love at first sight. When he
came back to Lucene later in 2003, he revised his thoughts about the framework and saw
the potential in search technologies. Then Solr came and that was it. From then on, Rafał
has concentrated on search technologies and data analysis. Right now Lucene, Solr, and
ElasticSearch are his main points of interest.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgement

This book is an update to the first cookbook for Solr that was released almost two year ago
now. What was at the beginning an update turned out to be a rewrite of almost all the recipes
in the book, because we wanted to not only bring you an update to the already existing
recipes, but also give you whole new recipes that will help you with common situations
when using Apache Solr 4.0. I hope that the book you are holding in your hands (or reading
on a computer or reader screen) will be useful to you.

Although I would go the same way if I could get back in time, the time of writing this book
was not easy for my family. Among the ones who suffered the most were my wife Agnes
and our two great kids, our son Philip and daughter Susanna. Without their patience and
understanding, the writing of this book wouldn't have been possible. I would also like to
thank my parents and Agnes' parents for their support and help.

I would like to thank all the people involved in creating, developing, and maintaining Lucene
and Solr projects for their work and passion. Without them this book wouldn't have been written.

Once again, thank you.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Ravindra Bharathi has worked in the software industry for over a decade in
various domains such as education, digital media marketing/advertising, enterprise
search, and energy management systems. He has a keen interest in search-based
applications that involve data visualization, mashups, and dashboards. He blogs at
http://ravindrabharathi.blogspot.com.

Marcelo Ochoa works at the System Laboratory of Facultad de Ciencias Exactas of the
Universidad Nacional del Centro de la Provincia de Buenos Aires, and is the CTO at Scotas.
com, a company specialized in near real time search solutions using Apache Solr and Oracle.
He divides his time between University jobs and external projects related to Oracle, and big
data technologies. He has worked in several Oracle related projects such as translation of
Oracle manuals and multimedia CBTs. His background is in database, network, web, and
Java technologies. In the XML world, he is known as the developer of the DB Generator for
the Apache Cocoon project, the open source projects DBPrism and DBPrism CMS, the
Lucene-Oracle integration by using Oracle JVM Directory implementation, and the Restlet.org
project – the Oracle XDB Restlet Adapter, an alternative to writing native REST web services
inside the database resident JVM.

Since 2006, he has been a part of the Oracle ACE program. Oracle ACEs are known for
their strong credentials as Oracle community enthusiasts and advocates, with candidates
nominated by ACEs in the Oracle Technology and Applications communities.

He is the author of Chapter 17 of the book Oracle Database Programming using Java and
Web Services, Kuassi Mensah, Digital Press and Chapter 21 of the book Professional XML
Databases, Kevin Williams, Wrox Press.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Apache Solr Configuration	 5

Introduction	 5
Running Solr on Jetty	 6
Running Solr on Apache Tomcat	 10
Installing a standalone ZooKeeper	 14
Clustering your data	 15
Choosing the right directory implementation	 17
Configuring spellchecker to not use its own index	 19
Solr cache configuration	 22
How to fetch and index web pages	 27
How to set up the extracting request handler	 30
Changing the default similarity implementation	 32

Chapter 2: Indexing Your Data	 35
Introduction	 35
Indexing PDF files	 36
Generating unique fields automatically	 38
Extracting metadata from binary files	 40
How to properly configure Data Import Handler with JDBC	 42
Indexing data from a database using Data Import Handler	 45
How to import data using Data Import Handler and delta query	 48
How to use Data Import Handler with the URL data source	 50
How to modify data while importing with Data Import Handler	 53
Updating a single field of your document	 56
Handling multiple currencies	 59
Detecting the document's language	 62
Optimizing your primary key field indexing	 67

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 3: Analyzing Your Text Data	 69
Introduction	 70
Storing additional information using payloads	 70
Eliminating XML and HTML tags from text	 73
Copying the contents of one field to another	 75
Changing words to other words	 77
Splitting text by CamelCase	 80
Splitting text by whitespace only	 82
Making plural words singular without stemming	 84
Lowercasing the whole string	 87
Storing geographical points in the index	 88
Stemming your data	 91
Preparing text to perform an efficient trailing wildcard search	 93
Splitting text by numbers and non-whitespace characters	 96
Using Hunspell as a stemmer	 99
Using your own stemming dictionary	 101
Protecting words from being stemmed	 103

Chapter 4: Querying Solr	 107
Introduction	 108
Asking for a particular field value	 108
Sorting results by a field value	 109
How to search for a phrase, not a single word	 111
Boosting phrases over words	 114
Positioning some documents over others in a query	 117
Positioning documents with words closer to each other first	 122
Sorting results by the distance from a point	 125
Getting documents with only a partial match	 128
Affecting scoring with functions	 130
Nesting queries	 134
Modifying returned documents	 136
Using parent-child relationships	 139
Ignoring typos in terms of performance	 142
Detecting and omitting duplicate documents	 145
Using field aliases	 148
Returning a value of a function in the results	 151

Chapter 5: Using the Faceting Mechanism	 155
Introduction	 155
Getting the number of documents with the same field value	 156
Getting the number of documents with the same value range	 158

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Getting the number of documents matching the query and subquery	 161
Removing filters from faceting results	 164
Sorting faceting results in alphabetical order	 168
Implementing the autosuggest feature using faceting	 171
Getting the number of documents that don't have a value in the field	 174
Having two different facet limits for two different fields in the same query	 177
Using decision tree faceting	 180
Calculating faceting for relevant documents in groups	 183

Chapter 6: Improving Solr Performance	 187
Introduction	 187
Paging your results quickly	 188
Configuring the document cache	 189
Configuring the query result cache	 190
Configuring the filter cache	 192
Improving Solr performance right after the startup or commit operation	 194
Caching whole result pages	 197
Improving faceting performance for low cardinality fields	 198
What to do when Solr slows down during indexing	 200
Analyzing query performance	 202
Avoiding filter caching	 206
Controlling the order of execution of filter queries	 207
Improving the performance of numerical range queries	 208

Chapter 7: In the Cloud	 211
Introduction	 211
Creating a new SolrCloud cluster	 211
Setting up two collections inside a single cluster	 214
Managing your SolrCloud cluster	 216
Understanding the SolrCloud cluster administration GUI	 220
Distributed indexing and searching	 223
Increasing the number of replicas on an already live cluster	 227
Stopping automatic document distribution among shards	 230

Chapter 8: Using Additional Solr Functionalities	 235
Introduction	 235
Getting more documents similar to those returned in the results list	 236
Highlighting matched words	 238
How to highlight long text fields and get good performance	 241
Sorting results by a function value	 243
Searching words by how they sound	 246
Ignoring defined words	 248

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Table of Contents

Computing statistics for the search results	 250
Checking the user's spelling mistakes	 253
Using field values to group results	 257
Using queries to group results	 260
Using function queries to group results	 262

Chapter 9: Dealing with Problems	 265
Introduction	 265
How to deal with too many opened files	 265
How to deal with out-of-memory problems	 267
How to sort non-English languages properly	 268
How to make your index smaller	 272
Diagnosing Solr problems	 274
How to avoid swapping	 280

Appendix: Real-life Situations	 283
Introduction	 283
How to implement a product's autocomplete functionality	 284
How to implement a category's autocomplete functionality	 287
How to use different query parsers in a single query	 290
How to get documents right after they were sent for indexation	 292
How to search your data in a near real-time manner	 294
How to get the documents with all the query words to the top
of the results set	 296
How to boost documents based on their publishing date	 300

Index	 305

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Welcome to the Solr Cookbook for Apache Solr 4.0. You will be taken on a tour through the
most common problems when dealing with Apache Solr. You will learn how to deal with the
problems in Solr configuration and setup, how to handle common querying problems, how
to fine-tune Solr instances, how to set up and use SolrCloud, how to use faceting and
grouping, fight common problems, and many more things. Every recipe is based on
real-life problems, and each recipe includes solutions along with detailed descriptions
of the configuration and code that was used.

What this book covers
Chapter 1, Apache Solr Configuration, covers Solr configuration recipes, different servlet
container usage with Solr, and setting up Apache ZooKeeper and Apache Nutch.

Chapter 2, Indexing Your Data, explains data indexing such as binary file indexing, using Data
Import Handler, language detection, updating a single field of document, and much more.

Chapter 3, Analyzing Your Text Data, concentrates on common problems when analyzing your
data such as stemming, geographical location indexing, or using synonyms.

Chapter 4, Querying Solr, describes querying Apache Solr such as nesting queries, affecting
scoring of documents, phrase search, or using the parent-child relationship.

Chapter 5, Using the Faceting Mechanism, is dedicated to the faceting mechanism in
which you can find the information needed to overcome some of the situations that you can
encounter during your work with Solr and faceting.

Chapter 6, Improving Solr Performance, is dedicated to improving your Apache Solr cluster
performance with information such as cache configuration, indexing speed up, and much more.

Chapter 7, In the Cloud, covers the new feature in Solr 4.0, the SolrCloud, and the setting up
of collections, replica configuration, distributed indexing and searching, and understanding
Solr administration.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

Chapter 8, Using Additional Solr Functionalities, explains documents highlighting, sorting
results on the basis of function value, checking user spelling mistakes, and using the
grouping functionality.

Chapter 9, Dealing with Problems, is a small chapter dedicated to the most common
situations such as memory problems, reducing your index size, and similar issues.

Appendix, Real Life Situations, describes how to handle real-life situations such as
implementing different autocomplete functionalities, using near real-time search,
or improving query relevance.

What you need for this book
In order to be able to run most of the examples in the book, you will need the Java Runtime
Environment 1.6 or newer, and of course the 4.0 version of the Apache Solr search server.

A few chapters in this book require additional software such as Apache ZooKeeper 3.4.3,
Apache Nutch 1.5.1, Apache Tomcat, or Jetty.

Who this book is for
This book is for users working with Apache Solr or developers that use Apache Solr to build
their own software that would like to know how to combat common problems. Knowledge of
Apache Lucene would be a bonus, but is not required.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The lib entry in the solrconfig.xml file tells
Solr to look for all the JAR files from the ../../langid directory".

A block of code is set as follows:

<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text_general" indexed="true" stored="true"/>
<field name="description" type="text_general" indexed="true"
stored="true" />
<field name="langId" type="string" indexed="true" stored="true" />

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<updateRequestProcessorChain name="langid">
 <processor class="org.apache.solr.update.processor.
 TikaLanguageIdentifierUpdateProcessorFactory">
 <str name="langid.fl">name,description</str>
 <str name="langid.langField">langId</str>
 <str name="langid.fallback">en</str>
 </processor>

Any command-line input or output is written as follows:

curl 'localhost:8983/solr/update?commit=true' -H 'Content-
type:application/json' -d '[{"id":"1","file":{"set":"New file name"}}]'

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any aspect
of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/

1
Apache Solr

Configuration

In this chapter we will cover:

ff Running Solr on Jetty

ff Running Solr on Apache Tomcat

ff Installing a standalone ZooKeeper

ff Clustering your data

ff Choosing the right directory implementation

ff Configuring spellchecker to not use its own index

ff Solr cache configuration

ff How to fetch and index web pages

ff How to set up the extracting request handler

ff Changing the default similarity implementation

Introduction
Setting up an example Solr instance is not a hard task, at least when setting up the simplest
configuration. The simplest way is to run the example provided with the Solr distribution, that
shows how to use the embedded Jetty servlet container.

If you don't have any experience with Apache Solr, please refer to the Apache Solr tutorial
which can be found at: http://lucene.apache.org/solr/tutorial.html before
reading this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

6

During the writing of this chapter, I used Solr version 4.0 and Jetty
version 8.1.5, and those versions are covered in the tips of the following
chapter. If another version of Solr is mandatory for a feature to run, then
it will be mentioned.

We have a simple configuration, simple index structure described by the schema.xml file,
and we can run indexing.

In this chapter you'll see how to configure and use the more advanced Solr modules; you'll
see how to run Solr in different containers and how to prepare your configuration to different
requirements. You will also learn how to set up a new SolrCloud cluster and migrate your
current configuration to the one supporting all the features of SolrCloud. Finally, you will
learn how to configure Solr cache to meet your needs and how to pre-sort your Solr indexes
to be able to use early query termination techniques efficiently.

Running Solr on Jetty
The simplest way to run Apache Solr on a Jetty servlet container is to run the provided
example configuration based on embedded Jetty. But it's not the case here. In this recipe,
I would like to show you how to configure and run Solr on a standalone Jetty container.

Getting ready
First of all you need to download the Jetty servlet container for your platform. You can get your
download package from an automatic installer (such as, apt-get), or you can download it
yourself from http://jetty.codehaus.org/jetty/.

How to do it...
The first thing is to install the Jetty servlet container, which is beyond the scope of this book,
so we will assume that you have Jetty installed in the /usr/share/jetty directory or you
copied the Jetty files to that directory.

Let's start by copying the solr.war file to the webapps directory of the Jetty installation
(so the whole path would be /usr/share/jetty/webapps). In addition to that we need
to create a temporary directory in Jetty installation, so let's create the temp directory in the
Jetty installation directory.

Next we need to copy and adjust the solr.xml file from the context directory of the Solr
example distribution to the context directory of the Jetty installation. The final file contents
should look like the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

7

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN" "http://www.
eclipse.org/jetty/configure.dtd">
<Configure class="org.eclipse.jetty.webapp.WebAppContext">
 <Set name="contextPath">/solr</Set>
 <Set name="war"><SystemProperty name="jetty.home"/>/webapps/solr.
war</Set>
 <Set name="defaultsDescriptor"><SystemProperty name="jetty.home"/>/
etc/webdefault.xml</Set>
 <Set name="tempDirectory"><Property name="jetty.home" default="."/>/
temp</Set>
</Configure>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

Now we need to copy the jetty.xml, webdefault.xml, and logging.properties files
from the etc directory of the Solr distribution to the configuration directory of Jetty, so in our
case to the /usr/share/jetty/etc directory.

The next step is to copy the Solr configuration files to the appropriate directory. I'm talking
about files such as schema.xml, solrconfig.xml, solr.xml, and so on. Those files
should be in the directory specified by the solr.solr.home system variable (in my case
this was the /usr/share/solr directory). Please remember to preserve the directory
structure you'll see in the example deployment, so for example, the /usr/share/solr
directory should contain the solr.xml (and in addition zoo.cfg in case you want to
use SolrCloud) file with the contents like so:

<?xml version="1.0" encoding="UTF-8" ?>
<solr persistent="true">
 <cores adminPath="/admin/cores" defaultCoreName="collection1">
 <core name="collection1" instanceDir="collection1" />
 </cores>
</solr>

All the other configuration files should go to the /usr/share/solr/collection1/conf
directory (place the schema.xml and solrconfig.xml files there along with any additional
configuration files your deployment needs). Your cores may have other names than the default
collection1, so please be aware of that.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

8

The last thing about the configuration is to update the /etc/default/jetty file and
add –Dsolr.solr.home=/usr/share/solr to the JAVA_OPTIONS variable of that
file. The whole line with that variable could look like the following:

JAVA_OPTIONS="-Xmx256m -Djava.awt.headless=true -Dsolr.solr.home=/usr/
share/solr/"

If you didn't install Jetty with apt-get or a similar software, you may not have the /etc/
default/jetty file. In that case, add the –Dsolr.solr.home=/usr/share/solr
parameter to the Jetty startup.

We can now run Jetty to see if everything is ok. To start Jetty, that was installed, for example,
using the apt-get command, use the following command:

/etc/init.d/jetty start

You can also run Jetty with a java command. Run the following command in the Jetty
installation directory:

java –Dsolr.solr.home=/usr/share/solr –jar start.jar

If there were no exceptions during the startup, we have a running Jetty with Solr deployed
and configured. To check if Solr is running, try going to the following address with your web
browser: http://localhost:8983/solr/.

You should see the Solr front page with cores, or a single core, mentioned. Congratulations!
You just successfully installed, configured, and ran the Jetty servlet container with Solr deployed.

How it works...
For the purpose of this recipe, I assumed that we needed a single core installation with only
schema.xml and solrconfig.xml configuration files. Multicore installation is very similar
– it differs only in terms of the Solr configuration files.

The first thing we did was copy the solr.war file and create the temp directory. The WAR
file is the actual Solr web application. The temp directory will be used by Jetty to unpack
the WAR file.

The solr.xml file we placed in the context directory enables Jetty to define the context
for the Solr web application. As you can see in its contents, we set the context to be /solr,
so our Solr application will be available under http://localhost:8983/solr/. We
also specified where Jetty should look for the WAR file (the war property), where the web
application descriptor file (the defaultsDescriptor property) is, and finally where the
temporary directory will be located (the tempDirectory property).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

The next step is to provide configuration files for the Solr web application. Those files should
be in the directory specified by the system solr.solr.home variable. I decided to use the
/usr/share/solr directory to ensure that I'll be able to update Jetty without the need of
overriding or deleting the Solr configuration files. When copying the Solr configuration files,
you should remember to include all the files and the exact directory structure that Solr needs.
So in the directory specified by the solr.solr.home variable, the solr.xml file should be
available – the one that describes the cores of your system.

The solr.xml file is pretty simple – there should be the root element called solr. Inside it
there should be a cores tag (with the adminPath variable set to the address where Solr's
cores administration API is available and the defaultCoreName attribute that says which
is the default core). The cores tag is a parent for cores definition – each core should have
its own cores tag with name attribute specifying the core name and the instanceDir
attribute specifying the directory where the core specific files will be available (such as
the conf directory).

If you installed Jetty with the apt-get command or similar, you will need to update
the /etc/default/jetty file to include the solr.solr.home variable for Solr
to be able to see its configuration directory.

After all those steps we are ready to launch Jetty. If you installed Jetty with apt-get
or a similar software, you can run Jetty with the first command shown in the example.
Otherwise you can run Jetty with a java command from the Jetty installation directory.

After running the example query in your web browser you should see the Solr front page
as a single core. Congratulations! You just successfully configured and ran the Jetty servlet
container with Solr deployed.

There's more...
There are a few tasks you can do to counter some problems when running Solr within the Jetty
servlet container. Here are the most common ones that I encountered during my work.

I want Jetty to run on a different port
Sometimes it's necessary to run Jetty on a different port other than the default one. We have
two ways to achieve that:

ff Adding an additional startup parameter, jetty.port. The startup command would
look like the following command:
java –Djetty.port=9999 –jar start.jar

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

10

ff Changing the jetty.xml file – to do that you need to change the following line:

<Set name="port"><SystemProperty name="jetty.port"
default="8983"/></Set>

To:

<Set name="port"><SystemProperty name="jetty.port"
default="9999"/></Set>

Buffer size is too small
Buffer overflow is a common problem when our queries are getting too long and too complex,
– for example, when we use many logical operators or long phrases. When the standard head
buffer is not enough you can resize it to meet your needs. To do that, you add the following
line to the Jetty connector in thejetty.xml file. Of course the value shown in the example
can be changed to the one that you need:

<Set name="headerBufferSize">32768</Set>

After adding the value, the connector definition should look more or less like the
following snippet:

<Call name="addConnector">
<Arg>
<New class="org.mortbay.jetty.bio.SocketConnector">
<Set name="port"><SystemProperty name="jetty.port" default="8080"/></
Set>
<Set name="maxIdleTime">50000</Set>
<Set name="lowResourceMaxIdleTime">1500</Set>
<Set name="headerBufferSize">32768</Set>
</New>
</Arg>
</Call>

Running Solr on Apache Tomcat
Sometimes you need to choose a servlet container other than Jetty. Maybe because your
client has other applications running on another servlet container, maybe because you just
don't like Jetty. Whatever your requirements are that put Jetty out of the scope of your interest,
the first thing that comes to mind is a popular and powerful servlet container – Apache
Tomcat. This recipe will give you an idea of how to properly set up and run Solr
in the Apache Tomcat environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

Getting ready
First of all we need an Apache Tomcat servlet container. It can be found at the Apache Tomcat
website – http://tomcat.apache.org. I concentrated on the Tomcat Version 7.x because
at the time of writing of this book it was mature and stable. The version that I used during the
writing of this recipe was Apache Tomcat 7.0.29, which was the newest one at the time.

How to do it...
To run Solr on Apache Tomcat we need to follow these simple steps:

1.	 Firstly, you need to install Apache Tomcat. The Tomcat installation is beyond the
scope of this book so we will assume that you have already installed this servlet
container in the directory specified by the $TOMCAT_HOME system variable.

2.	 The second step is preparing the Apache Tomcat configuration files. To do that we
need to add the following inscription to the connector definition in the server.xml
configuration file:
URIEncoding="UTF-8"

The portion of the modified server.xml file should look like the following
code snippet:

<Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443"
 URIEncoding="UTF-8" />

3.	 The third step is to create a proper context file. To do that, create a solr.xml file
in the $TOMCAT_HOME/conf/Catalina/localhost directory. The contents of
the file should look like the following code:
<Context path="/solr" docBase="/usr/share/tomcat/webapps/solr.war"
debug="0" crossContext="true">
 <Environment name="solr/home" type="java.lang.String" value="/
usr/share/solr/" override="true"/>
</Context>

4.	 The next thing is the Solr deployment. To do that we need the apache-solr-
4.0.0.war file that contains the necessary files and libraries to run Solr that
is to be copied to the Tomcat webapps directory and renamed solr.war.

5.	 The one last thing we need to do is add the Solr configuration files. The files that you
need to copy are files such as schema.xml, solrconfig.xml, and so on. Those
files should be placed in the directory specified by the solr/home variable (in our
case /usr/share/solr/). Please don't forget that you need to ensure the proper
directory structure. If you are not familiar with the Solr directory structure please take
a look at the example deployment that is provided with the standard Solr package.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

12

6.	 Please remember to preserve the directory structure you'll see in the example
deployment, so for example, the /usr/share/solr directory should contain
the solr.xml (and in addition zoo.cfg in case you want to use SolrCloud)
file with the contents like so:
<?xml version="1.0" encoding="UTF-8" ?>
<solr persistent="true">
 <cores adminPath="/admin/cores" defaultCoreName="collection1">
 <core name="collection1" instanceDir="collection1" />
 </cores>
</solr>

7.	 All the other configuration files should go to the /usr/share/solr/collection1/
conf directory (place the schema.xml and solrconfig.xml files there along with
any additional configuration files your deployment needs). Your cores may have other
names than the default collection1, so please be aware of that.

8.	 Now we can start the servlet container, by running the following command:
bin/catalina.sh start

9.	 In the log file you should see a message like this:
Info: Server startup in 3097 ms

10.	 To ensure that Solr is running properly, you can run a browser and point it to an
address where Solr should be visible, like the following:
http://localhost:8080/solr/

If you see the page with links to administration pages of each of the cores defined, that
means that your Solr is up and running.

How it works...
Let's start from the second step as the installation part is beyond the scope of this book.
As you probably know, Solr uses UTF-8 file encoding. That means that we need to ensure
that Apache Tomcat will be informed that all requests and responses made should use that
encoding. To do that, we modified the server.xml file in the way shown in the example.

The Catalina context file (called solr.xml in our example) says that our Solr application
will be available under the /solr context (the path attribute). We also specified the WAR
file location (the docBase attribute). We also said that we are not using debug (the debug
attribute), and we allowed Solr to access other context manipulation methods. The last thing
is to specify the directory where Solr should look for the configuration files. We do that by
adding the solr/home environment variable with the value attribute set to the path to
the directory where we have put the configuration files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

The solr.xml file is pretty simple – there should be the root element called solr. Inside
it there should be the cores tag (with the adminPath variable set to the address where
the Solr cores administration API is available and the defaultCoreName attribute describing
which is the default core). The cores tag is a parent for cores definition – each core should
have its own core tag with a name attribute specifying the core name and the instanceDir
attribute specifying the directory where the core-specific files will be available (such as the
conf directory).

The shell command that is shown starts Apache Tomcat. There are some other options of the
catalina.sh (or catalina.bat) script; the descriptions of these options are as follows:

ff stop: This stops Apache Tomcat

ff restart: This restarts Apache Tomcat

ff debug: This start Apache Tomcat in debug mode

ff run: This runs Apache Tomcat in the current window, so you can see the output on
the console from which you run Tomcat.

After running the example address in the web browser, you should see a Solr front page with
a core (or cores if you have a multicore deployment). Congratulations! You just successfully
configured and ran the Apache Tomcat servlet container with Solr deployed.

There's more...
There are some other tasks that are common problems when running Solr on Apache Tomcat.

Changing the port on which we see Solr running on Tomcat
Sometimes it is necessary to run Apache Tomcat on a different port other than 8080, which is
the default one. To do that, you need to modify the port variable of the connector definition
in the server.xml file located in the $TOMCAT_HOME/conf directory. If you would like your
Tomcat to run on port 9999, this definition should look like the following code snippet:

<Connector port="9999" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443"
 URIEncoding="UTF-8" />

While the original definition looks like the following snippet:

<Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443"
 URIEncoding="UTF-8" />

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

14

Installing a standalone ZooKeeper
You may know that in order to run SolrCloud—the distributed Solr installation—you need to have
Apache ZooKeeper installed. Zookeeper is a centralized service for maintaining configurations,
naming, and provisioning service synchronization. SolrCloud uses ZooKeeper to synchronize
configuration and cluster states (such as elected shard leaders), and that's why it is crucial to
have a highly available and fault tolerant ZooKeeper installation. If you have a single ZooKeeper
instance and it fails then your SolrCloud cluster will crash too. So, this recipe will show you how
to install ZooKeeper so that it's not a single point of failure in your cluster configuration.

Getting ready
The installation instruction in this recipe contains information about installing ZooKeeper
Version 3.4.3, but it should be useable for any minor release changes of Apache ZooKeeper.
To download ZooKeeper please go to http://zookeeper.apache.org/releases.html.
This recipe will show you how to install ZooKeeper in a Linux-based environment. You also
need Java installed.

How to do it...
Let's assume that we decided to install ZooKeeper in the /usr/share/zookeeper
directory of our server and we want to have three servers (with IP addresses 192.168.1.1,
192.168.1.2, and 192.168.1.3) hosting the distributed ZooKeeper installation.

1.	 After downloading the ZooKeeper installation, we create the necessary directory:
sudo mkdir /usr/share/zookeeper

2.	 Then we unpack the downloaded archive to the newly created directory. We do that
on three servers.

3.	 Next we need to change our ZooKeeper configuration file and specify the servers that
will form the ZooKeeper quorum, so we edit the /usr/share/zookeeper/conf/
zoo.cfg file and we add the following entries:
clientPort=2181
dataDir=/usr/share/zookeeper/data
tickTime=2000
initLimit=10
syncLimit=5
server.1=192.168.1.1:2888:3888
server.2=192.168.1.2:2888:3888
server.3=192.168.1.3:2888:3888

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

4.	 And now, we can start the ZooKeeper servers with the following command:
/usr/share/zookeeper/bin/zkServer.sh start

5.	 If everything went well you should see something like the following:
JMX enabled by default

Using config: /usr/share/zookeeper/bin/../conf/zoo.cfg

Starting zookeeper ... STARTED

And that's all. Of course you can also add the ZooKeeper service to start automatically during
your operating system startup, but that's beyond the scope of the recipe and the book itself.

How it works...
Let's skip the first part, because creating the directory and unpacking the ZooKeeper server
there is quite simple. What I would like to concentrate on are the configuration values of the
ZooKeeper server. The clientPort property specifies the port on which our SolrCloud servers
should connect to ZooKeeper. The dataDir property specifies the directory where ZooKeeper
will hold its data. So far, so good right ? So now, the more advanced properties; the tickTime
property specified in milliseconds is the basic time unit for ZooKeeper. The initLimit
property specifies how many ticks the initial synchronization phase can take. Finally, the
syncLimit property specifies how many ticks can pass between sending the request and
receiving an acknowledgement.

There are also three additional properties present, server.1, server.2, and server.3.
These three properties define the addresses of the ZooKeeper instances that will form the
quorum. However, there are three values separated by a colon character. The first part is the
IP address of the ZooKeeper server, and the second and third parts are the ports used by
ZooKeeper instances to communicate with each other.

Clustering your data
After the release of Apache Solr 4.0, many users will want to leverage SolrCloud distributed
indexing and querying capabilities. It's not hard to upgrade your current cluster to SolrCloud,
but there are some things you need to take care of. With the help of the following recipe you
will be able to easily upgrade your cluster.

Getting ready
Before continuing further it is advised to read the Installing a standalone ZooKeeper
recipe in this chapter. It shows how to set up a ZooKeeper cluster in order to be ready
for production use.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

16

How to do it...
In order to use your old index structure with SolrCloud, you will need to add the following
field to your fields definition (add the following fragment to the schema.xml file, to its
fields section):

<field name="_version_" type="long" indexed="true" stored="true"
multiValued="false"/>

Now let's switch to the solrconfig.xml file – starting with the replication handlers. First,
you need to ensure that you have the replication handler set up. Remember that you shouldn't
add master or slave specific configurations to it. So the replication handlers' configuration
should look like the following code:

<requestHandler name="/replication" class="solr.ReplicationHandler" />

In addition to that, you will need to have the administration panel handlers present, so the
following configuration entry should be present in your solrconfig.xml file:

<requestHandler name="/admin/" class="solr.admin.AdminHandlers" />

The last request handler that should be present is the real-time get handler, which should
be defined as follows (the following should also be added to the solrconfig.xml file):

<requestHandler name="/get" class="solr.RealTimeGetHandler">
 <lst name="defaults">
 <str name="omitHeader">true</str>
 </lst>
</requestHandler>

The next thing SolrCloud needs in order to properly operate is the transaction log
configuration. The following fragment should be added to the solrconfig.xml file:

<updateLog>
 <str name="dir">${solr.data.dir:}</str>
</updateLog>

The last thing is the solr.xml file. It should be pointing to the default cores administration
address – the cores tag should have the adminPath property set to the /admin/cores
value. The example solr.xml file could look like the following code:

<solr persistent="true">
 <cores adminPath="/admin/cores" defaultCoreName="collection1"
host="localhost" hostPort="8983" zkClientTimeout="15000">
 <core name="collection1" instanceDir="collection1" />
 </cores>
</solr>

And that's all, your Solr instances configuration files are now ready to be used with SolrCloud.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

How it works...
So now let's see why all those changes are needed in order to use our old configuration files
with SolrCloud.

The _version_ field is used by Solr to enable documents versioning and optimistic locking,
which ensures that you won't have the newest version of your document overwritten by
mistake. Because of that, SolrCloud requires the _version_ field to be present in your
index structure. Adding that field is simple – you just need to place another field definition
that is stored and indexed, and based on the long type. That's all.

As for the replication handler, you should remember not to add slave or master specific
configuration, only the simple request handler definition, as shown in the previous example.
The same applies to the administration panel handlers: they need to be available under the
default URL address.

The real-time get handler is responsible for getting the updated documents right away,
even if no commit or the softCommit command is executed. This handler allows Solr
(and also you) to retrieve the latest version of the document without the need for re-opening
the searcher, and thus even if the document is not yet visible during usual search operations.
The configuration is very similar to the usual request handler configuration – you need to
add a new handler with the name property set to /get and the class property set to solr.
RealTimeGetHandler. In addition to that, we want the handler to be omitting response
headers (the omitHeader property set to true).

One of the last things that is needed by SolrCloud is the transaction log, which enables real-
time get operations to be functional. The transaction log keeps track of all the uncommitted
changes and enables a real-time get handler to retrieve those. In order to turn on transaction
log usage, one should add the updateLog tag to the solrconfig.xml file and specify the
directory where the transaction log directory should be created (by adding the dir property as
shown in the example). In the configuration previously shown, we tell Solr that we want to use
the Solr data directory as the place to store the transaction log directory.

Finally, Solr needs you to keep the default address for the core administrative interface, so
you should remember to have the adminPath property set to the value shown in the example
(in the solr.xml file). This is needed in order for Solr to be able to manipulate cores.

Choosing the right directory implementation
One of the most crucial properties of Apache Lucene, and thus Solr, is the Lucene directory
implementation. The directory interface provides an abstraction layer for Lucene on all the
I/O operations. Although choosing the right directory implementation seems simple, it can
affect the performance of your Solr setup in a drastic way. This recipe will show you how to
choose the right directory implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

18

How to do it...
In order to use the desired directory, all you need to do is choose the right directory
factory implementation and inform Solr about it. Let's assume that you would like to use
NRTCachingDirectory as your directory implementation. In order to do that, you need to
place (or replace if it is already present) the following fragment in your solrconfig.xml file:

<directoryFactory name="DirectoryFactory" class="solr.
NRTCachingDirectoryFactory" />

And that's all. The setup is quite simple, but what directory factories are available to use?
When this book was written, the following directory factories were available:

ff solr.StandardDirectoryFactory

ff solr.SimpleFSDirectoryFactory

ff solr.NIOFSDirectoryFactory

ff solr.MMapDirectoryFactory

ff solr.NRTCachingDirectoryFactory

ff solr.RAMDirectoryFactory

So now let's see what each of those factories provide.

How it works...
Before we get into the details of each of the presented directory factories, I would like to
comment on the directory factory configuration parameter. All you need to remember is that
the name attribute of the directoryFactory tag should be set to DirectoryFactory
and the class attribute should be set to the directory factory implementation of your choice.

If you want Solr to make the decision for you, you should use solr.
StandardDirectoryFactory. This is a filesystem-based directory factory that tries
to choose the best implementation based on your current operating system and Java
virtual machine used. If you are implementing a small application, which won't use many
threads, you can use solr.SimpleFSDirectoryFactory which stores the index file
on your local filesystem, but it doesn't scale well with a high number of threads. solr.
NIOFSDirectoryFactory scales well with many threads, but it doesn't work well on
Microsoft Windows platforms (it's much slower), because of the JVM bug, so you should
remember that.

solr.MMapDirectoryFactory was the default directory factory for Solr for the 64-bit Linux
systems from Solr 3.1 till 4.0. This directory implementation uses virtual memory and a kernel
feature called mmap to access index files stored on disk. This allows Lucene (and thus Solr) to
directly access the I/O cache. This is desirable and you should stick to that directory if near
real-time searching is not needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

If you need near real-time indexing and searching, you should use solr.
NRTCachingDirectoryFactory. It is designed to store some parts of the index
in memory (small chunks) and thus speed up some near real-time operations greatly.

The last directory factory, solr.RAMDirectoryFactory, is the only one that is not
persistent. The whole index is stored in the RAM memory and thus you'll lose your index after
restart or server crash. Also you should remember that replication won't work when using
solr.RAMDirectoryFactory. One would ask, why should I use that factory? Imagine a
volatile index for an autocomplete functionality or for unit tests of your queries' relevancy.
Just anything you can think of, when you don't need to have persistent and replicated data.
However, please remember that this directory is not designed to hold large amounts of data.

Configuring spellchecker to not use its own
index

If you are used to the way spellchecker worked in the previous Solr versions, you may
remember that it required its own index to give you spelling corrections. That approach
had some disadvantages, such as the need for rebuilding the index, and replication between
master and slave servers. With the Solr Version 4.0, a new spellchecker implementation was
introduced – solr.DirectSolrSpellchecker. It allowed you to use your main index to
provide spelling suggestions and didn't need to be rebuilt after every commit. So now, let's
see how to use that new spellchecker implementation in Solr.

How to do it...
First of all, let's assume we have a field in the index called title, in which we hold titles
of our documents. What's more, we don't want the spellchecker to have its own index and
we would like to use that title field to provide spelling suggestions. In addition to that, we
would like to decide when we want a spelling suggestion. In order to do that, we need to do
two things:

1.	 First, we need to edit our solrconfig.xml file and add the spellchecking
component, whose definition may look like the following code:
<searchComponent name="spellcheck" class="solr.
SpellCheckComponent">
 <str name="queryAnalyzerFieldType">title</str>
 <lst name="spellchecker">
 <str name="name">direct</str>
 <str name="field">title</str>
 <str name="classname">solr.DirectSolrSpellChecker</str>
 <str name="distanceMeasure">internal</str>
 <float name="accuracy">0.8</float>
 <int name="maxEdits">1</int>

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

20

 <int name="minPrefix">1</int>
 <int name="maxInspections">5</int>
 <int name="minQueryLength">3</int>
 <float name="maxQueryFrequency">0.01</float>
 </lst>
</searchComponent>

2.	 Now we need to add a proper request handler configuration that will use the
previously mentioned search component. To do that, we need to add the following
section to the solrconfig.xml file:
<requestHandler name="/spell" class="solr.SearchHandler"
startup="lazy">
 <lst name="defaults">
 <str name="df">title</str>
 <str name="spellcheck.dictionary">direct</str>
 <str name="spellcheck">on</str>
 <str name="spellcheck.extendedResults">true</str>
 <str name="spellcheck.count">5</str>
 <str name="spellcheck.collate">true</str>
 <str name="spellcheck.collateExtendedResults">true</str>
 </lst>
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

3.	 And that's all. In order to get spelling suggestions, we need to run the following query:
/spell?q=disa

4.	 In response we will get something like the following code:
<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">5</int>
</lst>
<result name="response" numFound="0" start="0">
</result>
<lst name="spellcheck">
 <lst name="suggestions">
 <lst name="disa">
 <int name="numFound">1</int>
 <int name="startOffset">0</int>
 <int name="endOffset">4</int>
 <int name="origFreq">0</int>
 <arr name="suggestion">
 <lst>
 <str name="word">data</str>
 <int name="freq">1</int>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

 </lst>
 </arr>
 </lst>
 <bool name="correctlySpelled">false</bool>
 <lst name="collation">
 <str name="collationQuery">data</str>
 <int name="hits">1</int>
 <lst name="misspellingsAndCorrections">
 <str name="disa">data</str>
 </lst>
 </lst>
 </lst>
</lst>
</response>

If you check your data folder you will see that there is not a single directory responsible
for holding the spellchecker index. So, now let's see how that works.

How it works...
Now let's get into some specifics about how the previous configuration works, starting
from the search component configuration. The queryAnalyzerFieldType property
tells Solr which field configuration should be used to analyze the query passed to the
spellchecker. The name property sets the name of the spellchecker which will be used in
the handler configuration later. The field property specifies which field should be used
as the source for the data used to build spelling suggestions. As you probably figured out,
the classname property specifies the implementation class, which in our case is solr.
DirectSolrSpellChecker, enabling us to omit having a separate spellchecker index.
The next parameters visible in the configuration specify how the Solr spellchecker should
behave and that is beyond the scope of this recipe (however, if you would like to read more
about them, please go to the following URL address: http://wiki.apache.org/solr/
SpellCheckComponent).

The last thing is the request handler configuration. Let's concentrate on all the properties
that start with the spellcheck prefix. First we have spellcheck.dictionary, which
in our case specifies the name of the spellchecking component we want to use (please
note that the value of the property matches the value of the name property in the search
component configuration). We tell Solr that we want the spellchecking results to be present
(the spellcheck property with the value set to on), and we also tell Solr that we want to see
the extended results format (spellcheck.extendedResults set to true). In addition to
the mentioned configuration properties, we also said that we want to have a maximum of five
suggestions (the spellcheck.count property), and we want to see the collation and its
extended results (spellcheck.collate and spellcheck.collateExtendedResults
both set to true).

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

22

There's more...
Let's see one more thing – the ability to have more than one spellchecker defined in a
request handler.

More than one spellchecker
If you would like to have more than one spellchecker handling your spelling suggestions you
can configure your handler to use multiple search components. For example, if you would like
to use search components (spellchecking ones) named word and better (you have to have
them configured), you could add multiple spellcheck.dictionary parameters to your
request handler. This is how your request handler configuration would look:

<requestHandler name="/spell" class="solr.SearchHandler"
startup="lazy">
 <lst name="defaults">
 <str name="df">title</str>
 <str name="spellcheck.dictionary">direct</str>
 <str name="spellcheck.dictionary">word</str>
 <str name="spellcheck.dictionary">better</str>
 <str name="spellcheck">on</str>
 <str name="spellcheck.extendedResults">true</str>
 <str name="spellcheck.count">5</str>
 <str name="spellcheck.collate">true</str>
 <str name="spellcheck.collateExtendedResults">true</str>
 </lst>
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

Solr cache configuration
As you may already know, caches play a major role in a Solr deployment. And I'm not talking
about some exterior cache – I'm talking about the three Solr caches:

ff Filter cache: This is used for storing filter (query parameter fq) results and mainly
enum type facets

ff Document cache: This is used for storing Lucene documents which hold stored fields

ff Query result cache: This is used for storing results of queries

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

There is a fourth cache – Lucene's internal cache – which is a field cache, but you can't
control its behavior. It is managed by Lucene and created when it is first used by the
Searcher object.

With the help of these caches we can tune the behavior of the Solr searcher instance. In this
task we will focus on how to configure your Solr caches to suit most needs. There is one thing
to remember – Solr cache sizes should be tuned to the number of documents in the index,
the queries, and the number of results you usually get from Solr.

Getting ready
Before you start tuning Solr caches you should get some information about your Solr instance.
That information is as follows:

ff Number of documents in your index

ff Number of queries per second made to that index

ff Number of unique filter (the fq parameter) values in your queries

ff Maximum number of documents returned in a single query

ff Number of different queries and different sorts

All these numbers can be derived from Solr logs.

How to do it...
For the purpose of this task I assumed the following numbers:

ff Number of documents in the index: 1.000.000

ff Number of queries per second: 100

ff Number of unique filters: 200

ff Maximum number of documents returned in a single query: 100

ff Number of different queries and different sorts: 500

Let's open the solrconfig.xml file and tune our caches. All the changes should be made in
the query section of the file (the section between <query> and </query> XML tags).

1.	 First goes the filter cache:
<filterCache
 class="solr.FastLRUCache"
 size="200"
 initialSize="200"
 autowarmCount="100"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

24

2.	 Second goes the query result cache:
<queryResultCache
 class="solr.FastLRUCache"
 size="500"
 initialSize="500"
autowarmCount="250"/>

3.	 Third we have the document cache:
<documentCache
 class="solr.FastLRUCache"
 size="11000"
 initialSize="11000" />

Of course the above configuration is based on the example values.

4.	 Further let's set our result window to match our needs – we sometimes need to
get 20–30 more results than we need during query execution. So we change the
appropriate value in the solrconfig.xml file to something like this:

<queryResultWindowSize>200</queryResultWindowSize>

And that's all!

How it works...
Let's start with a little bit of explanation. First of all we use the solr.FastLRUCache
implementation instead of solr.LRUCache. So the called FastLRUCache tends to be faster
when Solr puts less into caches and gets more. This is the opposite to LRUCache which tends
to be more efficient when there are more puts than gets operations. That's why we use it.

This colud be the first time you see cache configuration, so I'll explain what cache configuration
parameters mean:

ff class: You probably figured that out by now. Yes, this is the class implementing the
cache.

ff size: This is the maximum size that the cache can have.

ff initialSize: This is the initial size that the cache will have.

ff autowarmCount: This is the number of cache entries that will be copied to the
new instance of the same cache when Solr invalidates the Searcher object – for
example, during a commit operation.

As you can see, I tend to use the same number of entries for size and initialSize, and
half of those values for autowarmCount. The size and initialSize properties can be
set to the same size in order to avoid the underlying Java object resizing, which consumes
additional processing time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

There is one thing you should be aware of. Some of the Solr caches (documentCache
actually) operate on internal identifiers called docid. Those caches cannot be automatically
warmed. That's because docid is changing after every commit operation and thus copying
docid is useless.

Please keep in mind that the settings for the size of the caches is usually good for the
moment you set them. But during the life cycle of your application your data may change,
your queries may change, and your user's behavior may, and probably will change. That's why
you should keep track of the cache usage with the use of Solr administration pages, JMX, or
a specialized software such as Scalable Performance Monitoring from Sematext (see more
at http://sematext.com/spm/index.html), and see how the utilization of each of the
caches changes in time and makes proper changes to the configuration.

There's more...
There are a few additional things that you should know when configuring your caches.

Using a filter cache with faceting
If you use the term enumeration faceting method (parameter facet.method=enum)
Solr will use the filter cache to check each term. Remember that if you use this method,
your filter cache size should have at least the size of the number of unique facet values
in all your faceted fields. This is crucial and you may experience performance loss if this
cache is not configured the right way.

When we have no cache hits
When your Solr instance has a low cache hit ratio you should consider not using caches at all
(to see the hit ratio you can use the administration pages of Solr). Cache insertion is not free
– it costs CPU time and resources. So if you see that you have a very low cache hit ratio, you
should consider turning your caches off – it may speed up your Solr instance. Before you turn
off the caches please ensure that you have the right cache setup – a small hit ratio can be a
result of bad cache configuration.

When we have more "puts" than "gets"
When your Solr instance uses put operations more than get operations you should consider
using the solr.LRUCache implementation. It's confirmed that this implementation behaves
better when there are more insertions into the cache than lookups.

Filter cache
This cache is responsible for holding information about the filters and the documents that
match the filter. Actually this cache holds an unordered set of document IDs that match the
filter. If you don't use the faceting mechanism with a filter cache, you should at least set its
size to the number of unique filters that are present in your queries. This way it will be possible
for Solr to store all the unique filters with their matching document IDs and this will speed up
the queries that use filters.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

26

Query result cache
The query result cache holds the ordered set of internal IDs of documents that match the given
query and the sort specified. That's why if you use caches you should add as many filters as you
can and keep your query (the q parameter) as clean as possible. For example, pass only the
search box content of your search application to the query parameter. If the same query will be
run more than once and the cache has enough capacity to hold the entry, it will be used to give
the IDs of the documents that match the query, thus a no Lucene (Solr uses Lucene to index
and query data that is indexed) query will be made saving the precious I/O operation for the
queries that are not in the cache – this will boost up your Solr instance performance.

The maximum size of this cache that I tend to set is the number of unique queries and their
sorts that are handled by my Solr in the time between the Searcher object's invalidation.
This tends to be enough in most cases.

Document cache
The document cache holds the Lucene documents that were fetched from the index. Basically,
this cache holds the stored fields of all the documents that are gathered from the Solr index.
The size of this cache should always be greater than the number of concurrent queries multiplied
by the maximum results you get from Solr. This cache can't be automatically warmed – that is
because every commit is changing the internal IDs of the documents. Remember that the cache
can be memory consuming in case you have many stored fields, so there will be times when you
just have to live with evictions.

Query result window
The last thing is the query result window. This parameter tells Solr how many documents
to fetch from the index in a single Lucene query. This is a kind of super set of documents
fetched. In our example, we tell Solr that we want the maximum of one hundred documents
as a result of a single query. Our query result window tells Solr to always gather two hundred
documents. Then when we need some more documents that follow the first hundred they
will be fetched from the cache, and therefore we will be saving our resources. The size of the
query result window is mostly dependent on the application and how it is using Solr. If you
tend to do a lot of paging, you should consider using a higher query result window value.

You should remember that the size of caches shown in this task is not
final, and you should adapt them to your application needs. The values and
the method of their calculation should only be taken as a starting point to
further observation and optimization of the process. Also, please remember
to monitor your Solr instance memory usage as using caches will affect the
memory that is used by the JVM.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

See also
There is another way to warm your caches if you know the most common queries that are sent
to your Solr instance – auto-warming queries. Please refer to the Improving Solr performance
right after a startup or commit operation recipe in Chapter 6, Improving Solr Performance.
For information on how to cache whole pages of results please refer to the Caching whole
result pages recipe in Chapter 6, Improving Solr Performance.

How to fetch and index web pages
There are many ways to index web pages. We could download them, parse them, and index
them with the use of Lucene and Solr. The indexing part is not a problem, at least in most
cases. But there is another problem – how to fetch them? We could possibly create our own
software to do that, but that takes time and resources. That's why this recipe will cover how
to fetch and index web pages using Apache Nutch.

Getting ready
For the purpose of this task we will be using Version 1.5.1 of Apache Nutch. To download the
binary package of Apache Nutch, please go to the download section of http://nutch.
apache.org.

How to do it...
Let's assume that the website we want to fetch and index is http://lucene.apache.org.

1.	 First of all we need to install Apache Nutch. To do that we just need to extract the
downloaded archive to the directory of our choice; for example, I installed it in the
directory /usr/share/nutch. Of course this is a single server installation and it
doesn't include the Hadoop filesystem, but for the purpose of the recipe it will be
enough. This directory will be referred to as $NUTCH_HOME.

2.	 Then we'll open the file $NUTCH_HOME/conf/nutch-default.xml and set
the value http.agent.name to the desired name of your crawler (we've taken
SolrCookbookCrawler as a name). It should look like the following code:
<property>
<name>http.agent.name</name>
<value>SolrCookbookCrawler</value>
<description>HTTP 'User-Agent' request header.</description>
</property>

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

28

3.	 Now let's create empty directories called crawl and urls in the $NUTCH_HOME
directory. After that we need to create the seed.txt file inside the created urls
directory with the following contents:
http://lucene.apache.org

4.	 Now we need to edit the $NUTCH_HOME/conf/crawl-urlfilter.txt file.
Replace the +.at the bottom of the file with +^http://([a-z0-9]*\.)*lucene.
apache.org/. So the appropriate entry should look like the following code:
+^http://([a-z0-9]*\.)*lucene.apache.org/

One last thing before fetching the data is Solr configuration.

5.	 We start with copying the index structure definition file (called schema-solr4.
xml) from the $NUTCH_HOME/conf/ directory to your Solr installation configuration
directory (which in my case was /usr/share/solr/collection1/conf/).
We also rename the copied file to schema.xml.

We also create an empty stopwords_en.txt file or we use the one provided with Solr
if you want stop words removal.

Now we need to make two corrections to the schema.xml file we've copied:

ff The first one is the correction of the version attribute in the schema tag. We need
to change its value from 1.5.1 to 1.5, so the final schema tag would look like this:
<schema name="nutch" version="1.5.1">

ff Then we change the boost field type (in the same schema.xml file) from string
to float, so the boost field definition would look like this:

<field name="boost" type="float" stored="true" indexed="false"/>

Now we can start crawling and indexing by running the following command from the $NUTCH_
HOME directory:

bin/nutch crawl urls -solr http://localhost:8983/solr/ -depth 3 -topN 50

Depending on your Internet connection and your machine configuration you should finally see
a message similar to the following one:

crawl finished: crawl-20120830171434

This means that the crawl is completed and the data was indexed to Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

How it works...
After installing Nutch and Solr, the first thing we did was set our crawler name. Nutch does
not allow empty names so we must choose one. The file nutch-default.xml defines more
properties than the mentioned ones, but at this time we only need to know about that one.

In the next step, we created two directories; one (crawl) which will hold the crawl data and
the second one (urls) to store the addresses we want to crawl. The contents of the seed.
txt file we created contains addresses we want to crawl, one address per line.

The crawl-urlfilter.txt file contains information about the filters that will be used to
check the URLs that Nutch will crawl. In the example, we told Nutch to accept every URL that
begins with http://lucene.apache.org.

The schema.xml file we copied from the Nutch configuration directory is prepared to be used
when Solr is used for indexing. But the one for Solr 4.0 is a bit buggy, at least in Nutch 1.5.1
distribution, and that's why we needed to make the changes previously mentioned.

We finally came to the point where we ran the Nutch command. We specified that we wanted
to store the crawled data in the crawl directory (first parameter), and the addresses to crawl
data from are in the urls directory (second parameter). The –solr switch lets you specify
the address of the Solr server that will be responsible for the indexing crawled data and is
mandatory if you want to get the data indexed with Solr. We decided to index the data to Solr
installed at the same server. The –depth parameter specifies how deep to go after the links
defined. In our example, we defined that we want a maximum of three links from the main
page. The –topN parameter specifies how many documents will be retrieved from each level,
which we defined as 50.

There's more...
There is one more thing worth knowing when you start a journey in the land of Apache Nutch.

Multiple thread crawling
The crawl command of the Nutch command-line utility has another option – it can
be configured to run crawling with multiple threads. To achieve that you add the
following parameter:

-threads N

So if you would like to crawl with 20 threads you should run the crawl command like sot:

bin/nutch crawl crawl/nutch/site -dir crawl -depth 3 -topN 50 –threads 20

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

30

See also
If you seek more information about Apache Nutch please refer to the http://nutch.
apache.org and go to the Wiki section.

How to set up the extracting request
handler

Sometimes indexing prepared text files (such as XML, CSV, JSON, and so on) is not enough.
There are numerous situations where you need to extract data from binary files. For example,
one of my clients wanted to index PDF files – actually their contents. To do that, we either
need to parse the data in some external application or set up Solr to use Apache Tika. This
task will guide you through the process of setting up Apache Tika with Solr.

How to do it...
In order to set up the extracting request handler, we need to follow these simple steps:

1.	 First let's edit our Solr instance solrconfig.xml and add the following
configuration:
<requestHandler name="/update/extract" class="solr.extraction.
ExtractingRequestHandler" >
 <lst name="defaults">
 <str name="fmap.content">text</str>
 <str name="lowernames">true</str>
 <str name="uprefix">attr_</str>
 <str name="captureAttr">true</str>
 </lst>
</requestHandler>

2.	 Next create the extract folder anywhere on your system (I created that folder in the
directory where Solr is installed), and place the apache-solr-cell-4.0.0.jar
from the dist directory (you can find it in the Solr distribution archive). After that you
have to copy all the libraries from the contrib/extraction/lib/ directory to the
extract directory you created before.

3.	 In addition to that, we need the following entries added to the solrconfig.xml file:

<lib dir="../../extract" regex=".*\.jar" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

31

And that's actually all that you need to do in terms of configuration.

To simplify the example, I decided to choose the following index structure (place it in the
fields section in your schema.xml file):

<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="text" type="text_general" indexed="true" stored="true"/>
<dynamicField name="attr_*" type="text_general" indexed="true"
stored="true" multiValued="true"/>

To test the indexing process, I've created a PDF file book.pdf using PDFCreator which
contained the following text only: This is a Solr cookbook. To index that file, I've
used the following command:

curl "http://localhost:8983/solr/update/extract?literal.id=1&commit=true"
-F "myfile=@book.pdf"

You should see the following response:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
<int name="status">0</int>
<int name="QTime">578</int>
</lst>
</response>

How it works...
Binary file parsing is implemented using the Apache Tika framework. Tika is a toolkit for
detecting and extracting metadata and structured text from various types of documents,
not only binary files but also HTML and XML files. To add a handler that uses Apache Tika,
we need to add a handler based on the solr.extraction.ExtractingRequestHandler
class to our solrconfig.xml file as shown in the example.

In addition to the handler definition, we need to specify where Solr should look for the
additional libraries we placed in the extract directory that we created. The dir attribute
of the lib tag should be pointing to the path of the created directory. The regex attribute
is the regular expression telling Solr which files to load.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

32

Let's now discuss the default configuration parameters. The fmap.content parameter tells
Solr what field content of the parsed document should be extracted. In our case, the parsed
content will go to the field named text. The next parameter lowernames is set to true;
this tells Solr to lower all names that come from Tika and have them lowercased. The next
parameter, uprefix, is very important. It tells Solr how to handle fields that are not defined
in the schema.xml file. The name of the field returned from Tika will be added to the value of
the parameter and sent to Solr. For example, if Tika returned a field named creator, and we
don't have such a field in our index, then Solr would try to index it under a field named attr_
creator which is a dynamic field. The last parameter tells Solr to index Tika XHTML elements
into separate fields named after those elements.

Next we have a command that sends a PDF file to Solr. We are sending a file to the /update/
extract handler with two parameters. First we define a unique identifier. It's useful to
be able to do that during document sending because most of the binary document won't
have an identifier in its contents. To pass the identifier we use the literal.id parameter.
The second parameter we send to Solr is the information to perform the commit right after
document processing.

See also
To see how to index binary files please refer to the Indexing PDF files and Extracting metadata
from binary files recipes in Chapter 2, Indexing Your Data.

Changing the default similarity
implementation

Most of the time, the default way of calculating the score of your documents is what you need.
But sometimes you need more from Solr; that's just the standard behavior. Let's assume that
you would like to change the default behavior and use a different score calculation algorithm
for the description field of your index. The current version of Solr allows you to do that and
this recipe will show you how to leverage this functionality.

Getting ready
Before choosing one of the score calculation algorithms available in Solr, it's good to read
a bit about them. The description of all the algorithms is beyond the scope of the recipe and
the book, but I would suggest going to the Solr Wiki pages (or look at Javadocs) and read the
basic information about available implementations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

33

How to do it...
For the purpose of the recipe let's assume we have the following index structure (just add the
following entries to your schema.xml file to the fields section):

<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true" stored="true"/>
<field name="description" type="text_general_dfr" indexed="true"
stored="true" />

The string and text_general types are available in the default schema.xml file provided
with the example Solr distribution. But we want DFRSimilarity to be used to calculate the
score for the description field. In order to do that, we introduce a new type, which is defined
as follows (just add the following entries to your schema.xml file to the types section):

<fieldType name="text_general_dfr" class="solr.TextField"
positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="stopwords.txt" enablePositionIncrements="true" />
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="stopwords.txt" enablePositionIncrements="true" />
 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"
ignoreCase="true" expand="true"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <similarity class="solr.DFRSimilarityFactory">
 <str name="basicModel">P</str>
 <str name="afterEffect">L</str>
 <str name="normalization">H2</str>
 <float name="c">7</float>
 </similarity>
</fieldType>

Also, to use per-field similarity we have to add the following entry to your schema.xml file:

<similarity class="solr.SchemaSimilarityFactory"/>

And that's all. Now let's have a look and see how that works.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Configuration

34

How it works...
The index structure presented in this recipe is pretty simple as there are only three fields.
The one thing we are interested in is that the description field uses our own custom
field type called text_general_dfr.

The thing we are mostly interested in is the new field type definition called text_general_
dfr. As you can see, apart from the index and query analyzer there is an additional section
– similarity. It is responsible for specifying which similarity implementation to use to
calculate the score for a given field. You are probably used to defining field types, filters,
and other things in Solr, so you probably know that the class attribute is responsible for
specifying the class implementing the desired similarity implementation which in our case
is solr.DFRSimilarityFactory. Also, if there is a need, you can specify additional
parameters that configure the behavior of your chosen similarity class. In the previous
example, we've specified four additional parameters: basicModel, afterEffect,
normalization, and c, which all define the DFRSimilarity behavior.

solr.SchemaSimilarityFactory is required to be able to specify the similarity
for each field.

There's more...
In addition to per-field similarity definition, you can also configure the global similarity:

Changing the global similarity
Apart from specifying the similarity class on a per-field basis, you can choose any other
similarity than the default one in a global way. For example, if you would like to use
BM25Similarity as the default one, you should add the following entry to your
schema.xml file:

<similarity class="solr.BM25SimilarityFactory"/>

As well as with the per-field similarity, you need to provide the name of the factory class
that is responsible for creating the appropriate similarity class.

www.it-ebooks.info

http://www.it-ebooks.info/

2
Indexing Your Data

In this chapter, we will cover:

ff Indexing PDF files

ff Generating unique fields automatically

ff Extracting metadata from binary files

ff How to properly configure Data Import Handler with JDBC

ff Indexing data from a database using Data Import Handler

ff How to import data using Data Import Handler and delta query

ff How to use Data Import Handler with the URL data source

ff How to modify data while importing with Data Import Handler

ff Updating a single field of your document

ff Handling multiple currencies

ff Detecting the document language

ff Optimizing your primary key field indexing

Introduction
Indexing data is one of the most crucial things in every Lucene and Solr deployment. When
your data is not indexed properly your search results will be poor. When the search results
are poor, it's almost certain the users will not be satisfied with the application that uses Solr.
That's why we need our data to be prepared and indexed as well as possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

36

On the other hand, preparing data is not an easy task. Nowadays we have more and more
data floating around. We need to index multiple formats of data from multiple sources.
Do we need to parse the data manually and prepare the data in XML format? The answer is
no – we can let Solr do that for us. This chapter will concentrate on the indexing process and
data preparation beginning from how to index data that is a binary PDF file, teaching how to
use the Data Import Handler to fetch data from database and index it with Apache Solr, and
finally describing how we can detect the document's language during indexing.

Indexing PDF files
Imagine that the library on the corner that we used to go to wants to expand its collection and
make it available for the wider public though the World Wide Web. It asked its book suppliers
to provide sample chapters of all the books in PDF format so they can share it with the online
users. With all the samples provided by the supplier came a problem – how to extract data for
the search box from more than 900 thousand PDF files. Solr can do it with the use of Apache
Tika. This recipe will show you how to handle such a task.

Getting ready
Before you start getting deeper into the task, please refer to the How to set up the extracting
request handler recipe in Chapter 1, Apache Solr Configuration, which will guide you through
the process of configuring Solr to use Apache Tika. We will use the same index structure
and Solr configuration presented in that recipe, and I assume you already have Solr properly
configured (according to the mentioned recipe) and ready to work.

How to do it...
To test the indexing process I've created a PDF file book.pdf using PDFCreator
(http://sourceforge.net/projects/pdfcreator/) which contained the
following text only: This is a Solr cookbook.. To index that file I've used the
following command:

curl "http://localhost:8983/solr/update/extract?literal.id=1&commit=true"
-F "myfile=@cookbook.pdf"

You should then see the following response:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">578</int>
 </lst>
 </response>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

To see what was indexed I've run the following within a web browser:

http://localhost:8983/solr/select/?q=text:solr

In return I've got:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 …
 <result name="response" numFound="1" start="0">
 <doc>
 <arr name="attr_created"><str>Thu Oct 21 16:11:51 CEST 2010</
 str></arr>
 <arr name="attr_creator"><str>PDFCreator Version 1.0.1</str></arr>
 <arr name="attr_producer"><str>GPL Ghostscript 8.71</str></arr>
 <arr name="attr_stream_content_type"><str>application/octet-
 stream</str></arr>
 <arr name="attr_stream_name"><str>cookbook.pdf</str></arr>
 <arr name="attr_stream_size"><str>3209</str></arr>
 <arr name="attr_stream_source_info"><str>myfile</str></arr>
 <str name="author">Gr0</str>
 <arr name="content_type"><str>application/pdf</str></arr>
 <str name="id">1</str>
 <str name="keywords"/>
 <date name="last_modified">2010-10-21T14:11:51Z</date>
 <str name="subject"/>
 <arr name="title"><str>cookbook</str></arr>
 </doc>
 </result>
 </response>

How it works...
The curl command we used sends a PDF file to Solr. We are sending a file to the /update/
extract handler along with two parameters. It's useful to be able to do that during document
sending because most of the binary documents won't have an identifier in its contents. To
pass the identifier we use the literal.id parameter. The second parameter we send asks
Solr to perform the commit operation right after document processing.

The test file I've created, for the purpose of the recipe, contained a simple sentence:
"This is a Solr cookbook".

Remember the contents of the PDF file I created? It contained the word "Solr". That's why
I asked Solr to give me documents which contain the word "Solr" in a field named text.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

38

In response, I got one document which matched the given query. To simplify the example,
I removed the response header part. As you can see in the response there were a few fields
that were indexed dynamically – their names start with attr_. Those fields contained
information about the file such as the size, the application that created it, and so on.
As we can see, we have our identifier indexed as we wished, and some other fields that
were present in the schema.xmlfile that Apache Tika could parse and return to Solr.

Generating unique fields automatically
Imagine you have an application that crawls the web and index documents found during
that crawl. The problem is that for some particular reason you can't set the document
identifier during indexing, and you would like Solr to generate one for you. This recipe
will help you, if you faced a similar problem.

How to do it...
The following steps will help you to generate unique fields automatically:

1.	 First let's create our index structure by adding the following entries to the schema.
xmlfields section:
<field name="id" type="uuid" indexed="true" stored="true"
default="NEW" multiValued="false"/>
<field name="name" type="text_general" indexed="true"
stored="true"/>
<field name="text" type="text_general" indexed="true"
stored="true"/>

2.	 In addition to that, we need to define the uuid field type by adding the following entry
to the types section of our schema.xml file:
<fieldType name="uuid" class="solr.UUIDField" indexed="true" />

3.	 In addition to that, we must remove the unique field definition, because Solr doesn't
allow using a unique field with the default="NEW" configuration, so the following
needs to be removed:
<uniqueKey>id</uniqueKey>

4.	 And now, let's try to index a document without an id field, for example one like this:
<add>
 <doc>
 <field name="name">Test name</field>
 <field name="text">Test text contents</field>
 </doc>
</add>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

In order to see if Solr generated an identifier for the document, let's run the following query:

http://localhost:8983/solr/select?q=*:*&indent=true

The response will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="indent">true</str>
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="name">Test name</str>
 <str name="text">Test text contents</str>
 <str name="id">b6f17c35-e5ad-4a09-b799-71580ca6be8a</str>
 </doc>
 </result>
 </response>

As you can see in the response, our document had one additional field we didn't add manually
– the id field, which is what we wanted to have.

How it works...
The idea is quite simple – we let Solr generate the id field for us. To do that, we defined
the id field to be based on the uuid field type, and to have a default value of new
(default="NEW"). By doing this we tell Solr that we want that kind of behavior. If you
look at the uuid field type, you can see that it is a simple type definition based on solr.
UUIDField. Nothing complicated.

Having your document's identifiers generated automatically is handy in some cases, but it
also comes with some restrictions from Solr and its components. One of the issues is that
you can't have the unique field defined, and because of that, the elevation component won't
work. Of course that's only an example. But if your application doesn't know the identifiers of
the documents and can't generate them, then using solr.UUIDField is one of the ways of
having document identifiers for your indexed documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

40

Extracting metadata from binary files
Suppose that our current client has a video and music store. Not the e-commerce one,
just the regular one – just around the corner. And now he wants to expand his business
to e-commerce. He wants to sell the products online. But his IT department said that
this will be tricky – because they need to hire someone to fill up the database with the
product names and their metadata. And that is the place where you come in and tell
them that you can extract titles and authors from the MP3 files that are available as
samples.Now let's see how that can be achieved.

Getting ready
Before you start getting deeper into the task, please refer to the How to set up the extracting
request handler recipe in Chapter 1, Apache Solr Configuration, which will guide you through
the process of configuring Solr to use Apache Tika.

How to do it...
1.	 Let's start by defining an index structure in the file schema.xml. The field definition

section should look like the following code:
<field name="id" type="string" indexed="true" stored="true"
required="true"/>
<field name="author" type="string" indexed="true" stored="true"
multiValued="true"/>
<field name="title" type="text" indexed="true" stored="true"/>
<dynamicField name="ignored_*" type="string" indexed="false"
stored="false" multiValued="true"/>

2.	 Now let's get the solrconfig.xml file ready:
<requestHandler name="/update/extract" class="solr.extraction.
ExtractingRequestHandler">
 <lst name="defaults">
 <str name="lowernames">true</str>
 <str name="uprefix">ignored_</str>
 <str name="captureAttr">true</str>
 </lst>
</requestHandler>

3.	 Now we can start sending the documents to Solr. To do that, let's run the
following command:
curl "http://localhost:8983/solr/update/extract?literal.
id=1&commit=true" -F "myfile=@sample.mp3"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

4.	 Let's check how the document was indexed. To do that type a query like the following
to your web browser:
http://localhost:8983/solr/select/?q=title:207

As a result I've got the following document:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">title:207</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="author">Armin Van Buuren</str>
 <str name="id">1</str>
 <str name="title">Desiderium 207 (Feat Susana)</str>
 </doc>
 </result>
 </response>

So it seems that everything went well.

How it works...
First we define an index structure that will suit our needs. I decided that besides the unique
ID, I need to store the title and author name. We also defined a dynamic field called ignored
to handle the data we don't want to index (not indexed and not stored).

The next step is to define a new request handler to handle our updates, as you already
know. We also added a few default parameters to define our handler behavior. In our case
the parameter uprefix tells Solr to index all unknown fields to the dynamic field whose
name begins with ignored_, thus the additional data will not be visible in the index.
The last parameter tells Solr to index Tika XHTML elements into separate fields named
after those elements.

Next we have a command that sends an MP3 file to Solr. We are sending a file to the /
update/extract handler with two parameters. First we define a unique identifier and
pass that identifier to Solr using the literal.id parameter. The second parameter we
send to Solr is information to perform a commit right after document processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

42

The query is a simple one, so I'll skip commenting on this part.

The last listing is an XML with Solr response. As you can see, there are only fields that are
explicitly defined in schema.xml – no dynamic fields. Solr and Tika managed to extract the
name and author of the file.

See also
ff If you want to index other types of binary files please refer to the Indexing PDF files

recipe in this chapter.

How to properly configure Data Import
Handler with JDBC

One of our clients is having a problem. His database of users grew to such size that even
the simple SQL select statement is taking too much time, and he seeks how to improve the
search time. Of course he heard about Solr but he doesn't want to generate XML or any other
data format and push it to Solr; he would like the data to be fetched. What can we do about
it? Well there is one thing – we can use one of the contribute modules of Solr, Data Import
Handler. This task will show you how to configure the basic setup of Data Import Handler and
how to use it.

How to do it...
1.	 First of all, copy the appropriate libraries that are required to use Data Import

Handler. So, let's create the dih folder anywhere on your system (I created it in the
directory where Solr is installed), and place apache-solr-dataimporthandler-
4.0.0.jar and apache-solr-dataimporthandler-extras-4.0.0.jar from
the Solr distribution dist directory in the folder. In addition to that, we need the
following entry to be added to the solrconfig.xml file:
<lib dir="../../dih" regex=".*\.jar" />

2.	 Next we need to modify the solrconfig.xml file. You should add an entry like the
following code:
<requestHandler name="/dataimport" class="org.apache.solr.handler.
dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config">db-data-config.xml</str>
 </lst>
</requestHandler>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

3.	 Now we will create the db-data-config.xml file that is responsible for the Data
Import Handler configuration. It should have contents like the following example:
<dataConfig>
 <dataSource driver="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/users" user="users"
 password="secret" />
 <document>
 <entity name="user" query="SELECT user_id, user_name from
 users">
 <field column="user_id" name="id" />
 <field column="user_name" name="name" />
 <entity name="user_desc" query="select desc from users_
 description where user_id=${user.user_id}">
 <field column="description" name="description" />
 </entity>
 </entity>
 </document>
</dataConfig></dataConfig>

If you want to use other database engines, please change the driver, url,
and user and password attributes.

4.	 Now, let's create a sample index structure. To do that we need to modify the fields
section of the schema.xml file to something like the following snippet:
<field name="id" type="string" indexed="true" stored="true"
required="true"/>
<field name="name" type="text" indexed="true" stored="true" />
<field name="user_desc" type="text" indexed="true" stored="true"/>
<field name="description" type="text" indexed="true"
stored="true"/>

5.	 One more thing before the indexing – you should copy an appropriate JDBC driver
to the lib directory of your Solr installation or the dih directory we created before.
You can get the library for PostgreSQL here http://jdbc.postgresql.org/
download.html.

6.	 Now we can start indexing. Run the following query to Solr:
http://localhost:8983/solr/dataimport?command=full-import

As you may know, the HTTP protocol is asynchronous, and thus you won't be updated on how
the process of indexing is going. To check the status of the indexing process, you can run the
command once again.

And that's how we configure Data Import Handler.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

44

How it works...
First we have a solrconfig.xml part which actually defines a new request handler, Data
Import Handler, to be used by Solr. The <str name="config"> XML tag specifies the name
of the Data Import Handler configuration file.

The second listing is the actual configuration of Data Import Handler. I used the JDBC
source connection sample to illustrate how to configure Data Import Handler. The contents
of this configuration file start with the root tag named dataConfig which is followed by
a second tag defining a data source and named dataSource. In the example, I used the
PostgreSQL database and thus the JDBC driver is org.postgresql.Driver. We also
define the database connection URL (attribute named url), and the database credentials
(attributes user and password).

Next we have a document definition – a tag named document. This is the section containing
information about the document that will be sent to Solr. The document definition is made of
database queries – the entities.

The entity is defined by a name (the name attribute) and a SQL query (the query attribute).
The entity name can be used to reference values in sub-queries – you can see an example
of such a behavior in the second entity named user_desc. As you may already have noticed,
entities can be nested to handle sub-queries. The SQL query is there to fetch the data from
the database and use it to fill the entity variables which will be indexed.

After the entity comes the mapping definition. There is a single field tag for every column
returned by a query, but that is not a must – Data Import Handler can guess what the
mapping is (for example, where the entity field name matches the column name), but I
tend to use mappings because I find it easier to maintain. But let's get back to fields. The
field tag is defined by two attributes: column which is the column name returned by a
query, and name which is the field to which the data will be written.

Next we have a Solr query to start the indexing process. There are actually five commands
that can be run:

ff /dataimport: This will return the actual status.

ff /dataimport?command=full-import: This command will start the full import
process. Remember that the default behavior is to delete the index contents at
the beginning.

ff /dataimport?command=delta-import: This command will start the
incremental indexing process.

ff /dataimport?command=reload-config: This command will force
a configuration reload.

ff /dataimport?command=abort: This command will stop the indexing process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

There's more...
If you don't want to delete the index contents at the start of the full indexing using Data
Import Handler, add the clean=false parameter to your query. An example query should
look like this:

http://localhost:8983/solr/data?command=full-import&clean=false

Indexing data from a database using Data
Import Handler

Let's assume that we want to index the Wikipedia data, and we don't want to parse the whole
Wikipedia data and make another XML file. Instead we asked our DB expert to import the
data dump information from the PostgreSQL database, so we could fetch that data. Did I say
fetch? Yes it is possible – with the use of Data Import Handler and JDBC data source. This
task will guide you through how to do it.

Getting ready
Please refer to the How to properly configure Data Import Handler recipe in this chapter
to get to know the basics about how Data Import Handler is configured. I'll assume that
you already have Solr set up according to the instructions available in the mentioned recipe.

How to do it...
The Wikipedia data I used in this example is available under the Wikipedia downloads
page at http://download.wikimedia.org/.

1.	 First let's add a sample index structure. To do that we need to modify the fields
section of the schema.xml file so it looks like the following code:
<field name="id" type="string" indexed="true" stored="true"
required="true"/>
<field name="name" type="string" indexed="true" stored="true"/>
<field name="revision_id" type="string" indexed="true"
stored="true"/>
<field name="contents" type="text" indexed="true" stored="true"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

46

2.	 The next step is to add the request handler definition to the solrconfig.xml file,
like so:
<requestHandler name="/dataimport" class="org.apache.solr.handler.
dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config">db-data-config.xml</str>
 </lst>
</requestHandler>

3.	 Now we have to add a db-data-config.xml file to the conf directory of your Solr
instance (or core):
<dataConfig>
 <dataSource driver="org.postgresql.Driver"
url="jdbc:postgresql://localhost:5432/wikipedia" user="wikipedia"
password="secret" />
 <document>
 <entity name="page" query="SELECT page_id, page_title from
 page">
 <field column="page_id" name="id" />
 <field column="page_title" name="name" />
 <entity name="revision" query="select rev_id from revision
 where rev_page=${page.page_id}">
 <field column="rev_id" name="revision_id" />
 <entity name="pagecontent" query="select old_text from
 pagecontent where old_id=${revision.rev_id}">
 <field column="old_text" name="contents" />
 </entity>
 </entity>
 </entity>
 </document>
</dataConfig>

4.	 Now let's start indexing. Type the following URL into your browser:
http://localhost:8983/solr/dataimport?command=full-import

5.	 Let's check the indexing status during import. To do that we run the following query:
http://localhost:8983/solr/dataimport

Solr will show us a response like the following reponse:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
 <lst name="initArgs">
 <lst name="defaults">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

 <str name="config">db-data-config.xml</str>
 </lst>
 </lst>
 <str name="status">busy</str>
 <str name="importResponse">A command is still running...</str>
 <lst name="statusMessages">
 <str name="Time Elapsed">0:1:15.460</str>
 <str name="Total Requests made to DataSource">39547</str>
 <str name="Total Rows Fetched">59319</str>
 <str name="Total Documents Processed">19772</str>
 <str name="Total Documents Skipped">0</str>
 <str name="Full Dump Started">2010-10-25 14:28:00</str>
 </lst>
 <str name="WARNING">This response format is experimental.
 It is likely to change in the future.</str>
 </response>

6.	 Running the same query after the importing process is done should result in a
response like the following:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
 <lst name="initArgs">
 <lst name="defaults">
 <str name="config">db-data-config.xml</str>
 </lst>
 </lst>
 <str name="status">idle</str>
 <str name="importResponse"/>
 <lst name="statusMessages">
 <str name="Total Requests made to DataSource">2118645</str>
 <str name="Total Rows Fetched">3177966</str>
 <str name="Total Documents Skipped">0</str>
 <str name="Full Dump Started">2010-10-25 14:28:00</str>
 <str name="">Indexing completed. Added/Updated: 1059322
 documents. Deleted 0 documents.</str>
 <str name="Committed">2010-10-25 14:55:20</str>
 <str name="Optimized">2010-10-25 14:55:20</str>
 <str name="Total Documents Processed">1059322</str>
 <str name="Time taken ">0:27:20.325</str>
 </lst>
 <str name="WARNING">This response format is experimental.
 It is likely to change in the future.</str>
 </response>

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

48

How it works...
To illustrate how Data Import Handler works, I decided to index the Polish Wikipedia data.
I decided to store four fields: page identifier, page name, page revision number, and its
contents. The field definition part is fairly simple so I decided to skip commenting on this.

The request handler definition, the Data Import Handler configuration, and command queries
were discussed in the How to properly configure Data Import Handler with JDBC recipe in this
chapter. The portions of interest in this task are in the db-data-config.xml file.

As you can see, we have three entities defined. The first entity gathers data from the page
table and maps two of the columns to the index fields. The next entity is nested inside the
first one and gathers the revision identifier from the table revision with the appropriate
condition. The revision identifier is then mapped to the index field. The last entity is nested
inside the second and gathers data from the pagecontent table again with the appropriate
condition. And again, the returned column is mapped to the index field.

We have the response which shows us that the import is still running (the listing with <str
name="importResponse">A command is still running...</str>). As you can
see there is information about how many data rows were fetched, how many requests to
the database were made, how many Solr documents were processed, and how many were
deleted. There is also information about the start of the indexing process. One thing you
should be aware of: this response can change in the next versions of Solr and Data
Import Handler.

The last listing shows us the summary of the indexing process.

How to import data using Data Import
Handler and delta query

Do you remember the task with the users import from the recipe named How to properly
configure Data Import Handler? We imported all the users from our client database but it took
ages – about two weeks. Our client is very happy with the results. His database is now not
used for searching but only updating. And yes, that is the problem for us – how do we update
data in the index? We can't fetch the whole data every time – it took two weeks. What we can
do is an incremental import which will modify only the data that has changed since the last
import. This task will show you how to do that.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

Getting ready
Please refer to the How to properly configure Data Import Handler recipe in this chapter to
get to know the basics of the Data Import Handler configuration. I assume that Solr is set up
according to the description given in the mentioned recipe.

How to do it...
1.	 The first thing you should do is add an additional column to the tables you use. So

in our case let's assume that we added a column named last_modified (which
should be a timestamp-based column). Now our db-data-config.xml will look
like the following code:
<dataConfig>

 <dataSource driver="org.postgresql.Driver"
url="jdbc:postgresql://localhost:5432/users" user="users"
password="secret" />
 <document>
 <entity name="user" query="SELECT user_id, user_name FROM users"
deltaImportQuery="select user_id, user_name FROM users WHERE user_
id = '${dataimporter.delta.user_id}'"deltaQuery="select user_id
 FROM users WHERE last_modified > '${dataimporter.last_index_
 time}'">
 <field column="user_id" name="id" />
 <field column="user_name" name="name" />
 <entity name="user_desc" query="select description from
 users_description where user_id=${user.user_id}">
 <field column="description" name="description" />
 </entity>
 </entity>
 </document>
</dataConfig></dataConfig>

2.	 After that we run a new kind of query to start delta import:

http://localhost:8983/solr/dataimport?command=delta-import

How it works...
First we modified our database table to include a column named last_modified. We need
to ensure that the column will be modified at the same time as the table is. Solr will not
modify the database, so you have to ensure that your application will do that.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

50

When running a delta import, Data Import Handler will create a file named dataimport.
properties inside a Solr configuration directory. In that file, the last index time will be
stored as a timestamp. This timestamp will be later used to distinguish whether the data
was changed or not. It can be used in a query by using a special variable: ${dataimporter.
last_index_time}.

You may have already noticed the two differences – two additional attributes defining an
entity named user – deltaQuery and deltaImportQuery. The first one is responsible
for getting the information about which users were modified since the last index. Actually
it only gets the user's unique identifiers. It uses the last_modified field to determine
which users were modified since the last import. Then the second query is executed –
deltaImportQuery. This query gets users with the appropriate unique identifier, to get
all the data which we want to index. One thing worth noticing is the way that I used the user
identifier in deltaImportQuery. I used the delta variable with its user_id (the same
name as the table column name) variable to get it: ${dataimporter.delta.user_id}.

You may have noticed that I left the query attribute in the entity definition. It's left on
purpose; you may need to index the entire data once again, so that configuration will
be useful for full imports as well as for the partial ones.

Next we have a query that shows how to run the delta import. You may have noticed that
compared to the full import, we didn't use the full-import command – we've sent the
delta-import command.

The statuses that are returned by Solr are the same as with the full import, so please refer to
the appropriate chapters to see what information they carry.

One more thing – the delta queries are only supported for the default SqlEntityProcessor
class. This means that you can only use those queries with JDBC data sources.

How to use Data Import Handler with the
URL data source

Do you remember the first example with the Wikipedia data? We asked our fellow DB expert
to import the data dump into PostgreSQL and we fetched the data from there. But what if our
colleague is sick and can't help us, and we need to import that data? We can parse the data
and send it to Solr, but that's not an option – we don't have much time to do that. So what to
do? Yes, you guessed – we can use Data Import Handler and one of its data sources, file data
source. This task will show you how to do that.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

Getting ready
Please refer to the How to properly configure Data Import Handler recipe in this chapter
to get to know the basics of the Data Import Handler configuration. I assume that Solr is
set up according to the description given in the mentioned recipe.

How to do it...
Let's take a look at our data source. To be consistent, I chose to index the Wikipedia data,
which you should already be familiar with.

1.	 First of all, the index structure. Our field definition part of schema.xml should look
like the following code:
<field name="id" type="string" indexed="true" stored="true"
required="true"/>
<field name="name" type="string" indexed="true" stored="true"/>
<field name="revision_id" type="string" indexed="true"
stored="true"/>
<field name="contents" type="text" indexed="true" stored="true"/>

2.	 The next step is to define a Data Import Handler request handler (put that definition
in the solrconfig.xml file):
<requestHandler name="/dataimport" class="org.apache.solr.handler.
dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config">data-config.xml</str>
 </lst>
</requestHandler>

3.	 And now the data-config.xml file:
<dataConfig>
 <dataSource type="FileDataSource" encoding="UTF-8" />
 <document>
 <entity name="page" processor="XPathEntityProcessor"
stream="true" forEach="/mediawiki/page/" url="/solrcookbook/data/
enwiki-20120802-pages-articles.xml"transformer="RegexTransformer">
 <field column="id" xpath="/mediawiki/page/id" />
 <field column="name" xpath="/mediawiki/page/title" />
 <field column="revision_id" xpath="/mediawiki/page/revision/id"
 />
 <field column="contents" xpath="/mediawiki/page/revision/text"
 />
 <field column="$skipDoc" regex="^#REDIRECT .*"
replaceWith="true" sourceColName="contents"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

52

 </entity>
 </document>
</dataConfig>

4.	 Now let's start indexing by sending the following query to Solr:

http://localhost:8983/solr/dataimport?command=full-import

After the import is done, we will have the data indexed.

How it works...
The Wikipedia data I used in this example is available under the Wikipedia downloads page
at http://download.wikimedia.org/enwiki/. I've chosen the pages-articles.
xml.bz2 file (actually it was named enwiki-20120802-pages-articles.xml.bz2)
which is about 6 GB. We only want to index some of the data from the file: page identifier,
name, revision, and page contents. I also wanted to skip articles that are only linking to
other articles in Wikipedia.

The field definition part of the schema.xml file is fairly simple and contains only four fields
and there is nothing unusual within it, so I'll skip commenting on it.

The solrconfig.xml file contains the handler definition with the information about the
Data Import Handler configuration filename.

Next we have the data-config.xml file where the actual configuration is written. We
have a new data source type here named FileDataSource. This data source will read the
data from a local directory. You can use HttpDataSource if you want to read data from
an outer location. The XML tag defining the data source also specifies the file encoding
(the encoding attribute) and in our example it's UTF-8. Next we have an entity definition,
which has a name under which it will be visible, a processor which will process our data. The
processor attribute is only mandatory when not using a database source. This value must
be set to XPathEntityProcessor in our case. The stream attribute, which is set to true,
informs Data Import Handler to stream the data from the file which is a must in our case
when the data is large. Following that we have a forEach attribute which specifies an XPath
expression – this path will be iterated over. There is a location of the data file defined in the
url attribute and a transformer defined in the transformer attribute. A transformer is a
mechanism that will transform every row of data and process it before sending it to Solr.

Under the entity definition we have field mapping definitions. We have columns which are
the same as the index field names thus I skipped the name field. There is one additional
attribute named xpath in the mapping definitions. It specifies the XPath expression that
defines where the data is located in the XML file. If you are not familiar with XPath please
refer to the http://www.w3schools.com/xpath/default.asp tutorial.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

We also have a special column named $skipDoc. It tells Solr which documents to skip (if
the value of the column is true then Solr will skip the document). The column is defined
by a regular expression (attribute regex), a column to which the regular expression applies
(attribute sourceColName), and the value that will replace all the occurrences of the given
regular expression (replaceWith attribute). If the regular expression matches (in this case,
if the data in the column specified by the sourceColName attribute starts with #REDIRECT),
then the $skipDoc column will be set to true and thus the document will be skipped.

The actual indexing time was more than four hours on my machine, so if you try to index the
sample Wikipedia data please take that into consideration.

How to modify data while importing with
Data Import Handler

After we indexed the users and made the indexing incremental (the How to properly configure
Data Import Handler and How to import data using Data Import Handler and delta query
recipes), we were asked if we could modify the data a bit. Actually it would be perfect if we could
split name and surname into two fields in the index while those two reside in a single column in
the database. And of course, updating the database is not an option (trust me – it almost never
is). Can we do that? Of course we can, we just need to add some more configuration details in
Data Import Handler and use a transformer. This task will show you how to do that.

Getting ready
Please refer to the How to properly configure Data Import Handler recipe in this chapter to
get to know the basics about the Data Import Handler configuration. Also, to be able to run
examples in this chapter, you need to run Solr in the servlet container run on Java 6 or later. I
assume that Solr is set up according to the description given in the mentioned recipe.

How to do it...
Let's assume that we have a database table. To select users from our table we use the
following SQL query:

SELECT user_id, user_name, description FROM users

The response may look like this:

user_id	user_name	description
1	John Kowalski	superuser
2	Amanda Looks	user

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

54

Our task is to split the name from the surname and place it in two fields: name and surname.

1.	 First of all change the index structure, so our field definition part of schema.xml
should look like the following code:
<field name="id" type="string" indexed="true" stored="true"
required="true"/>
<field name="firstname" type="string" indexed="true"
stored="true"/>
<field name="surname" type="string" indexed="true" stored="true"/>
<field name="description" type="text" indexed="true"
stored="true"/>

2.	 Now we have to add a db-data-config.xml file:
<dataConfig>
 <dataSource driver="org.postgresql.Driver"
url="jdbc:postgresql://localhost:5432/users" user="users"
password="secret" />
 <script><![CDATA[
 function splitName(row) {
 var nameTable = row.get('user_name').split(' ');
 row.put('firstname', nameTable[0]);
 row.put('surname', nameTable[1]);
 row.remove('name');
 return row;
 }
]]></script>
 <document>
 <entity name="user" transformer="script:splitName" query="SELECT
 user_id, user_name, description from users">
 <field column="user_id" name="id" />
 <field column="firstname" />
 <field column="surname" />
 <field column="description" />
 </entity>
 </document>
</dataConfig>

3.	 And now you can follow the normal indexing procedure which was discussed in the
How to properly configure Data Import Handler recipe in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

How it works...
The first two listings are the sample SQL query and the result given by a database. Next we
have a field definition part of the schema.xml file which defines four fields. Look at the
example database rows once again. See the difference? We have four fields in our index while
our database rows have only three columns. We must split the contents of the user_name
column into two index fields: firstname and surname. To do that, we will use JavaScript
language and the script transformer functionality of Data Import Handler.

The solrconfig.xml file is the same as the one discussed in the How to properly configure
Data Import Handler recipe in this chapter, so I'll skip that as well.

Next we have the updated contents of the db-data-config.xml file which we use to define
the behavior of Data Import Handler. The first and the biggest difference is the script tag
that will be holding our scripts that parse the data. The scripts should be held in the CDATA
section. I defined a simple function called splitName that takes one parameter, database row
(remember that the functions that operate on entity data should always take one parameter).
The first thing in the function is getting the contents of the user_name column, split it with the
space character, and assign it into a JavaScript table. Then we create two additional columns
in the processed row – firstname and surname. The contents of those rows come from the
JavaScript table we created. Then we remove the user_name column because we don't want it
to be indexed. The last operation is the returning of the processed row.

To enable script processing you must add one additional attribute to the entity definition – the
transformer attribute with the contents such as script:functionName. In our example,
it looks like this: transformer:"script:splitName". It tells Data Import Handler to use
the defined function name for every row returned by the query.

And that's how it works. The rest is the usual indexing process described in the How to
properly configure Data Import Handler task in this chapter.

There's more...
If you want to use a different language other than JavaScript, then you have to specify it in the
language attribute of the <script> tag. Just remember that the scripting language that you
want to use must be supported by Java 6. The example definition would look as follows:

<script language="ECMAScript">…</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

56

Updating a single field of your document
Imagine that you have a system where you store a document your users upload. In addition
to that, your users can add other users to have access to the files they uploaded. As you
probably know, before Solr 4.0, when you wanted to update a single field in a document
you had to re-index the whole document. Solr 4.0 allows you to update a single field if
you fulfill some basic requirements. So let's see how we can do that in Solr 4.0.

How to do it...
For the purpose of the recipe, let's assume we have the following index structure
(put the following entries to your schema.xml file's fields section):

<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="file" type="text_general" indexed="true" stored="true"/>
<field name="user" type="string" indexed="true" stored="true"
multiValued="true" />

In addition to that, we need the _version_ field:

<field name="_version_" type="long" indexed="true" stored="true"/>

And that's all when it comes to the schema.xml file. In addition to that, let's assume
we have the following data indexed:

<add>
 <doc>
 <field name="id">1</field>
 <field name="file">Sample file</field>
 <field name="user">gro</field>
 <field name="user">negativ</field>
 </doc>
</add>

So, we have a sample file and two user names specifying which users of our system can
access that file. But what if we would like to add another user called jack. Is that possible?
Yes, with Solr 4.0 it is. To add the value to a field which has multiple values, we should send
the following command:

curl 'localhost:8983/solr/update?commit=true' -H 'Content-
type:application/json' -d '[{"id":"1","user":{"add":"jack"}}]'

Let's see if it worked by sending the following query:

http://localhost:8983/solr/select?q=*:*&indent=true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

The response sent by Solr was as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="indent">true</str>
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="file">Sample file</str>
 <arr name="user">
 <str>gro</str>
 <str>negativ</str>
 <str>jack</str>
 </arr>
 <long name="_version_">1411121765349851136</long></doc>
 </result>
 </response>

As you can see it worked without any problems. Imagine that now one of the users changed
the name of the document, and we would also like to update the file field of that document
to match that change. In order to do so, we should send the following command:

curl 'localhost:8983/solr/update?commit=true' -H 'Content-
type:application/json' -d '[{"id":"1","file":{"set":"New file name"}}]'

And again, we send the same query as before to see if the command succeeded:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="indent">true</str>
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

58

 <str name="id">1</str>
 <str name="file">New file name</str>
 <arr name="user">
 <str>gro</str>
 <str>negativ</str>
 <str>jack</str>
 </arr>
 <long name="_version_">1411121902871642112</long></doc>
 </result>
 </response>

It worked again. So now let's see how Solr does that.

How it works...
As you can see the index structure is pretty simple; we have a document identifier, its name,
and users that can access that file. As you can see all the fields in the index are marked as
stored (stored="true"). This is required for the partial update functionality to work. This
is because, under the hood, Solr takes all the values from the fields and updates the one we
mentioned to be updated. So it is just a typical document indexing, but instead of you having
to provide all the information, it's Solr's responsibility to get it from the index.

Another thing that is required for the partial update functionality to work is the _version_
field. You don't have to set it during indexing, it is used internally by Solr. The example data
we are indexing is also very simple. It is a single document with two users defined.

[{"id":"1","user":{"add":"jack"}}]

The interesting stuff comes with the update command. As you can see, that command
is run against a standard update handler you run indexing against. The commit=true
parameter tells Solr to perform the commit operation right after update. The -H 'Content-
type:application/json' part is responsible for setting the correct HTTP headers for the
update request. Next we have the request contents itself. It is sent as a JSON object.
We specified that we are interested in the document with the identifier "1" ("id":"1").
We want to change the user field and we want to add the jack value to that field (the
add command). So as you can see, the add command is used when we want to add a
new value to a field which can hold multiple values.

The second command shown as an example shows how to change the value of a
single-valued field. It is very similar to what we had before, but instead of using the
add command, we use the set command. And again, as you can see, it worked perfectly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

Handling multiple currencies
Imagine a situation where you run an e-commerce site and you sell your products all over the
world. One day you say that you would like to calculate the currencies by yourself and have
all the goodies that Solr gives you on all the currencies you support. You could of course add
multiple fields, one for each currency. On the other hand, you can use the new functionality
introduced in Solr 3.6 and create a field that will use the provided currency exchange rates.

How to do it...
This recipe will show you how to configure and use multiple currencies using a single field
in the index:

1.	 Let's start with creating a sample index structure, by modifying the fields section
in your schema.xml file so it looks like the following code:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="price" type="currencyField" indexed="true"
stored="true" />

2.	 In addition to that, we need to provide the definition for the type the price field is
based on (add the following entry to the types section in your schema.xml file):
<fieldType class="solr.CurrencyField" name="currencyField"
defaultCurrency="USD" currencyConfig="currencyExchange.xml" />

3.	 Another file that we need to create is the currencyExchange.xml file, which should
be placed in the conf directory of your collection and have the following contents:
 <currencyConfig version="1.0">
 <rates>
 <rate from="USD" to="EUR" rate="0.743676" comment="European
 Euro" />
 <rate from="USD" to="HKD" rate="7.801922" comment="HONG KONG
 Dollar" />
 <rate from="USD" to="GBP" rate="0.647910" comment="UNITED
 KINGDOM Pound" />
 </rates>
 </currencyConfig>

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

60

4.	 Now we can index some example data. For this recipe, I decided to index the
following documents:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Test document one</field>
 <field name="price">10.10,USD</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Test document two</field>
 <field name="price">12.01,USD</field>
 </doc>
</add>

5.	 Let's now check if that works. Our second document costs 12.01 USD and we have
defined the exchange rate for European Euro as 0.743676. This gives us about 7.50
EUR for the first document and about 8.90 EUR for the second one. Let's check that
by sending the following query to Solr:
http://localhost:8983/solr/select?q=name:document&fq=price:[8.00,E
UR TO 9.00,EUR]

6.	 The result returned by Solr is as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="fq">price:[8.00,EUR TO 9.00,EUR]</str>
 <str name="q">name:document</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Test document two</str>
 <str name="price">12.01,USD</str></doc>
 </result>
 </response>

As you can see, we got the document we wanted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

61

How it works...
The idea behind the functionality is simple – we create a field based on a certain type and
we provide a file with a currency exchange rate, and that's all. After that we can query our
Solr instance with the use of all the currencies we defined exchange rates for. But now, let's
discuss all the previous configuration changes in detail.

The index structure is very simple; it contains three fields of which one is responsible for
holding the price of the document and is based on the currencyField type. This type is
based on solr.CurrencyField. Its defaultCurrency attribute specifies the default
currency for all the fields using this type. This is important, because Solr will return prices
in the defined default currency, no matter what currency is used during the query. The
currencyConfig attribute specifies the name of the file with the exchange rate definition.

Our currencyExchange.xml file provides exchange rate for three currencies:

ff EUR

ff HKD

ff GBP

The file should be structured similar to the example one previously shown. This means
that each exchange rate should have the from attribute telling Solr from which currency
the exchange will be done, the to attribute specifying to which currency the exchange will
be done, and the rate attribute specifying the actual exchange rate. In addition to that,
it can also have the comment attribute if we want to include some short comment.

During indexing, we need to specify the currency we want the data to be indexed with. In
the previous example, we indexed data with USD. This is done by specifying the price, a
colon character, and the currency code after it. So 10.10,USD will mean ten dollars
and ten cents in USD.

The last thing is the query. As you can see, you can query Solr with different currencies from
the one used during indexing. This is possible because of the provided exchange rates file.
As you can see, when we use a range query for a price field, we specify the value, the colon
character, and the currency code after it. Please remember that if you provide a currency
 code unknown to Solr, it will throw an exception saying that the currency is not known.

There's more...
You can also have the exchange rates being updated automatically by specifying the
currency provider.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

62

Setting up your own currency provider
Specifying the currency exchange rate file is great, but we need to update that file because
the exchange rates change constantly. Luckily for us, Solr committers thought about it and
gave us the option to provide an exchange rate provider instead of a plain file. The provider
is a class responsible for providing the exchange rate data. The default exchange rate provider
available in Solr uses exchange rates from http://openexchangerates.org, which are
updated hourly. In order to use it, we need to modify our currencyField field
type definition and introduce three new properties (and remove the currencyConfig one):

ff providerClass: This class implements the exchange rates provider,
which in our case will be the default one available in Solr – solr.
OpenExchangeRatesOrgProvider

ff refreshInterval: This determines how often to refresh the rates
(specified in minutes)

ff ratesFileLocation: This determines the location of the file with rates in open
exchange format

So the final configuration should look like the following snippet:

<fieldType name="currencyField" class="solr.CurrencyField"
providerClass="solr.OpenExchangeRatesOrgProvider"
refreshInterval="120" ratesFileLocation="http://192.168.10.10/latest.
json"/>

You can download the sample exchange file from the http://openexchangerates.org
site after creating an account there.

Detecting the document's language
Imagine a situation where you have users from different countries and you would like to give
them a choice to only see content you index that is written in their native language. Sounds quite
interesting, right? Let us see how we can identify the language of the documents during indexing
and store that information along with the documents in the index for later use.

How to do it...
For the language identification we will use one of the Solr contrib modules, but let's start from
the beginning.

1.	 For the purpose of the recipe, I assume that we will be using the following index
structure (add the following to the fields section of your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

63

<field name="name" type="text_general" indexed="true"
stored="true"/>
<field name="description" type="text_general" indexed="true"
stored="true" />
<field name="langId" type="string" indexed="true" stored="true" />

We will use the langId field to store the information about the identified language.

2.	 The next thing we need to do is create a langid directory somewhere on your
filesystem (I'll assume that the directory is created in the same directory that Solr is
installed) and copy the following libraries to that directory:

�� apache-solr-langid-4.0.0.jar (from the dist directory of Apache
Solr distribution)

�� jsonic-1.2.7.jar (from the contrib/langid/lib directory of Apache
Solr distribution)

�� langdetect-1.1.jar (from the contrib/langid/lib directory of
Apache Solr distribution)

3.	 Next we need to add some information to the solrconfig.xml file. First we need to
inform Solr that we want it to load the additional libraries. We do that by adding the
following entry to the config section of that file:
<lib dir="../../langid/" regex=".*\.jar" />

4.	 In addition to that we configure a new update processor by adding the following to the
config section of the solrconfig.xml file:
<updateRequestProcessorChain name="langid">
 <processor class="org.apache.solr.update.processor.
LangDetectLanguageIdentifierUpdateProcessorFactory">
 <str name="langid.fl">name,description</str>
 <str name="langid.langField">langId</str>
 <str name="langid.fallback">en</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

5.	 Now, we need some data to be indexed. I decided to use the following test data
(stored in a data.xml file):
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">First</field>
 <field name="description">>Water is a chemical substance with
the chemical formula H2O. A water molecule contains one oxygen
and two hydrogen atoms connected by covalent bonds. Water is a

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

64

liquid at ambient conditions, but it often co-exists on Earth with
its solid state, ice, and gaseous state (water vapor or steam).
Water also
exists in a liquid crystal state near hydrophilic surfaces.[1]
[2] Under nomenclature used to name chemical compounds, Dihydrogen
monoxide is the scientific name for water, though it is almost
never used.</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Zweite</field>
 <field name="description">Wasser (H2O) ist eine chemische
Verbindung aus den Elementen Sauerstoff (O) und Wasserstoff
(H). Wasser ist die einzige chemische Verbindung auf der Erde,
die in der Natur in allen drei Aggregatzuständen vorkommt.
Die Bezeichnung Wasser wird dabei besonders für den flüssigen
Aggregatzustand verwendet. Im festen (gefrorenen) Zustand spricht
man von Eis, im gasförmigen Zustand von Wasserdampf.</field>
 </doc>
</add>

6.	 And now the indexing. To index the above test file I used the following commands:
curl 'http://localhost:8983/solr/update?update.chain=langid'
--data-binary @data.xml -H 'Content-type:application/xml'

curl 'http://localhost:8983/solr/update?update.chain=langid'
--data-binary '<commit/>' -H 'Content-type:application/xml'

7.	 After sending the previous two commands, we can finally test if that worked. We will
just ask Solr to return all the documents by sending the q=*:* query. The following
results will be returned:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">6</int>
 <lst name="params">
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">First</str>
 <str name="description">>Water is a chemical substance with
the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

65

chemical formula H2O. A water molecule contains one oxygen and two
hydrogen atoms connected by covalent bonds. Water is a liquid at
ambient conditions, but it often co-exists on Earth with its solid
state, ice, and gaseous state (water vapor or steam). Water also
exists in a liquid crystal state near hydrophilic surfaces.[1]
[2] Under nomenclature used to name chemical compounds, Dihydrogen
monoxide is the scientific name for water, though it is almost
never used.</str>
 <str name="langId">en</str></doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Zweite</str>
 <str name="description">Wasser (H2O) ist eine chemische
Verbindung
aus den Elementen Sauerstoff (O) und Wasserstoff (H). Wasser ist
die einzige chemische Verbindung auf der Erde, die in der Natur
in allen drei Aggregatzuständen vorkommt. Die Bezeichnung Wasser
wird dabei besonders für den flüssigen Aggregatzustand verwendet.
Im festen (gefrorenen) Zustand spricht man von Eis, im gasförmigen
Zustand von Wasserdampf.</str>
 <str name="langId">de</str></doc>
 </result>
 </response>

As you can see, the langId field was filled with the correct language.

How it works...
The index structure we used is quite simple; it contains four fields and we are most interested
in the langId field which won't be supplied with the data, but instead of that we want Solr
to fill it.

The mentioned libraries are needed in order for the language identification to work. The lib
entry in the solrconfig.xml file tells Solr to look for all the JAR files from the ../../
langid directory. Remember to change that to reflect your setup.

Now the update request processor chain definition comes. We need
that definition to include org.apache.solr.update.processor.
LangDetectLanguageIdentifierUpdateProcessorFactory in order to detect the
document language. The langid.fl property tells the defined processor which fields
should be used to detect the language. langid.langField specifies to which field the
detected language should be written. The last property, langid.fallback, tells the
language detection library what language should be set if it fails to detect a language.
The solr.LogUpdateProcessorFactory and solr.RunUpdateProcessorFactory
processors are there to log the updates and actually run them.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

66

As for data indexing, in order to use the defined update request processor chain, we need to
tell Solr that we want it to be used. In order to do that, when sending data to Solr we specify
the additional parameter called update.chain with the name of the update chain we want
to use, which in our case is langid. The --data-binary switch tells the curl command to
send that data in a binary format and the -H switch tells curl which content type should
be used. In the end we send the commit command to write the data to the Lucene index.

There's more...
If you don't want to use the previously mentioned processor to detect the document language,
you can use the one that uses the Apache Tika library:

Language identification based on Apache Tika
If LangDetectLanguageIdentifierUpdateProcessorFactory is not good
enough for you, you can try using language identification based on the Apache Tika
library. In order to do that you need to provide all the libraries from the contrib/
extraction directory in the Apache Solr distribution package instead of the ones
from contrib/langid/lib, and instead of using the org.apache.solr.update.
processor.LangDetectLanguageIdentifierUpdateProcessorFactory
processor use org.apache.solr.update.processor.
TikaLanguageIdentifierUpdateProcessorFactory. So the final configuration should
look like the following code:

<updateRequestProcessorChain name="langid">
 <processor class="org.apache.solr.update.processor.
 TikaLanguageIdentifierUpdateProcessorFactory">
 <str name="langid.fl">name,description</str>
 <str name="langid.langField">langId</str>
 <str name="langid.fallback">en</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

However, remember to still specify the update.chain parameter during indexing or add the
defined processor to your update handler configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

67

Optimizing your primary key field indexing
Most of the data stored in Solr has some kind of primary key. Primary keys are different from
most of the fields in your data as each document has a unique value stored; because they are
primary in most cases they are unique. Because of that, a search on this primary field
is not always as fast as you would expect when you compare it to databases. So, is there
anything we can do to make it faster? With Solr 4.0 we can, and this recipe will show
you how to improve the execution time of queries run against unique fields in Solr.

How to do it...
Let's assume we have the following field defined as a unique key for our Solr collection.
So, in your schema.xml file, you would have the following:

ff In your fields section you would have the following:
<field name="id" type="string" indexed="true" stored="true"
required="true" />

ff After your fields section the following entry could be found:
<uniqueKey>id</uniqueKey>

The following steps will help you optimize the indexing of your primary key field:

1.	 Now, we would like to use the Lucene flexible indexing and use PulsingCodec
to handle our id field. In order to do that we introduce the following field type (just
place it in the types section of your schema.xml file):
<fieldType name="string_pulsing" class="solr.StrField"
postingsFormat="Pulsing40"/>

2.	 In addition to that, we need to change the id field definition to use the new type.
So, we should change the type attribute from string to string_pulsing:
<field name="id" type="string_pulsing" indexed="true"
stored="true" required="true" />

3.	 In addition to that we need to put the following entry in the solrconfig.xml file:
<codecFactory class="solr.SchemaCodecFactory"/>

And that's all. Now you can start indexing your data.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

68

How it works...
The changes we made use the new feature introduced in Apache Lucene 4.0 and in Solr – the
so-called flexible indexing. It allows us to modify the way data is written into an inverted index
and thus configure it to our own needs. In the previous example, we used PulsingCodec
(postingsFormat="Pulsing40") in order to store the unique values in a special way. The
idea behind that codec is that the data for low frequency terms is written in a special way to
save a single I/O seek operation when retrieving a document or documents for those terms
from the index. That's why in some cases, when you do a noticeable amount of search to your
unique field (or any high cardinality field indexed with PulsingCodec), you can see a drastic
performance increase for that fields.

The last change, the one we made to the solrconfig.xml file, is required; without
it Solr wouldn't let us use specified codes and would throw an exception during startup.
It just specifies which codec factory should be used to create codec instances.

Please keep in mind that the previously mentioned method is very case dependent and
you may not see a great performance increase with the change.

www.it-ebooks.info

http://www.it-ebooks.info/

3
Analyzing Your

Text Data

In this chapter, we will cover:

ff Storing additional information using payloads

ff Eliminating XML and HTML tags from text

ff Copying the contents of one field to another

ff Changing words to other words

ff Splitting text by CamelCase

ff Splitting text by white space only

ff Making plural words singular without stemming

ff Lowercasing the whole string

ff Storing geographical points in the index

ff Stemming your data

ff Preparing text to perform an efficient trailing wildcard search

ff Splitting text by numbers and non-white space characters

ff Using Hunspell as a stemmer

ff Using your own stemming dictionary

ff Protecting words from being stemmed

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

70

Introduction
The process of data indexing can be divided into parts. One of the parts, actually one of the
last parts of that process, is data analysis. It's one of the crucial parts of data preparation.
It defines how your data will be written into an index. It defines its structure and so on. In Solr,
data behavior is defined by types. A type's behavior can be defined in the context of the indexing
process or the context of the query process, or both. Furthermore, a type definition is composed
of a tokenizer (or multiple ones–one for querying and one for indexing) and filters (both token
filters and character filters).

A tokenizer specifies how your data will be pre-processed after it is sent to the appropriate field.
Analyzer operates on the whole data that is sent to the field. Types can only have one tokenizer.
The result of the tokenizer's work is a stream of objects called tokens. Next in the analysis chain
are the filters. They operate on the tokens in the token stream. They can do anything with the
tokens – change them, remove them, or make them lowercase, for example. Types can have
multiple filters.

One additional type of filter is character filters. They do not operate on tokens from the token
stream. They operate on the data that is sent to the field, and they are invoked before the
data is sent to the analyzer.

This chapter will focus on data analysis and how to handle common day-to-day analysis
questions and problems.

Storing additional information using
payloads

Imagine you have a powerful preprocessing tool that can extract information about all the
words in the text. Your boss would like you to use it with Solr or at least store the information it
returns in Solr. So what can you do? We can use something called payload to store that data.
This recipe will show you how to do it.

How to do it...
I assume that we already have an application that takes care of recognizing the part of
speech in our text data. What we need to add is the data to the Solr index. To do that we
will use a payload – a metadata that can be stored with each occurrence of a term.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

1.	 First of all, you need to modify the index structure. To do this, we will add the
new field type to the schema.xml file (the following entries should be added
to the types section):
<fieldtype name="partofspeech" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.DelimitedPayloadTokenFilterFactory"
encoder="integer" delimiter="|"/>
 </analyzer>
</fieldtype>

2.	 Now we'll add the field definition part to the schema.xml file (the following entries
should be added to the fields section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="text" type="text" indexed="true" stored="true" />
<field name="speech" type="partofspeech" indexed="true"
stored="true" multivalued="true" />

3.	 Now let's look at what the example data looks like (I named it ch3_payload.xml):
<add>
 <doc>
 <field name="id">1</field>
 <field name="text">ugly human</field>
 <field name="speech">ugly|3 human|6</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="text">big book example</field>
 <field name="speech">big|3 book|6 example|1</field>
 </doc>
</add>

4.	 The next step is to index our data. To do that, we run the following command from
the exampledocs directory (put the ch3_payload.xml file there):
java -jar post.jar ch3_payload.xml

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

72

5.	 To check if the payloads were written to the index, we will use the analysis capabilities
or the Solr administration panel. We will test the test|7 term with the associated
payload. The following is what it looks like:

How it works...
What information can the payload hold? It may hold information that is compatible with the
encoder type you define for the solr.DelimitedPayloadTokenFilterFactory filter.
In our case, we don't need to write our own encoder – we will use the supplied one to store
integers. We will use it to store the boost of the term. For example, nouns will be given a token
boost value of 6, while the adjectives will be given a boost value of 3.

So first, we have the type definition. We defined a new type in the schema.xml file named
partofspeech based on the Solr text field (attribute class="solr.TextField"). Our
tokenizer splits the given text on whitespace characters. Then we have a new filter which
handles our payloads. The filter defines an encoder which in our case is an integer (attribute
encoder="integer"). Furthermore it defines a delimiter which separates the term from
the payload. In our case the separator is the pipe character (|).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

Finally we have the field definitions. In our example we only define three fields:

ff Identifier

ff Text

ff Recognized speech part with payload

Now let's take a look at the example data. We have two simple fields – id and text. The one
that we are interested in is the speech field. Look at how it is defined. It contains pairs which
are made of a term, a delimiter, and a boost value. For example, book|6. In the example, I
decided to boost nouns with a boost value of 6 and adjectives with the boost value of 3. I also
decided that words that cannot be identified by my application, which is used to identify parts of
speech, will be given a boost of 1. Pairs are separated with a space character, which in our case
will be used to split those pairs – that is the task of the tokenizer which we defined earlier.

To index the documents we use simple post tools provided with the example deployment of
Solr. To use it, invoke the command shown in the example. The post tools will send the data
to the default update handler found under the address http://localhost:8983/solr/
update. The following parameter is the file that is going to be sent to Solr. You can
also post a list of files, not only a single one.

As you can see on the provided screenshot, payload is being properly encoded and
written to the index – you can see [0 0 0 7] in the payload section of the solr.
DelimitedPayloadTokenFilterFactory filter.

Eliminating XML and HTML tags from text
There are many real-life situations when you have to clean your data. Let's assume that you want
to index web pages that your client sends you. You don't know anything about the structure of
that page; one thing you know is that you must provide a search mechanism that will enable
searching through the content of the pages. Of course you could index the whole page, splitting
it by whitespaces, but then you would probably hear the clients complain about the HTML tags
being searchable and so on. So before we enable searching the contents of the page, we need
to clean the data. In this example we need to remove the HTML tags. This recipe will show you
how to do it with Solr.

How to do it...
1.	 Let's start with assuming that our data looks like this (the ch3_html.xml file):

<add>
 <doc>
 <field name="id">1</field>
 <field name="html"><html><head><title>My page</title></
head><body><p>This is a my<i>sample</i> page</body></
html></field>

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

74

 </doc>
</add>

2.	 Now let's take care of the schema.xml file. First add the type definition to the
schema.xml file:
<fieldType name="html_strip" class="solr.TextField">
 <analyzer>
 <charFilter class="solr.HTMLStripCharFilterFactory"/>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

3.	 The next step is to add the following to the field definition part of the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="html" type="html_strip" indexed="true" stored="false"
/>

4.	 We can now index our data and have the HTML tags removed, right? Let's check
that, by going to the analysis section of the Solr administration pages and passing
the <html><head><title>My page</title></head><body><p>This is a
my<i>sample</i> page</body></html> text to analysis there:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

75

How it works...
First of all we have the data example. In the example we see one file with two fields, the identifier
and some HTML data nested in the CDATA section. You must remember to surround HTML data
in CDATA tags if they are full pages and start from HTML tags like our example. Otherwise Solr
will have problems with parsing the data. But if you only have some tags present in the data, you
shouldn't worry.

Next we have the html_strip type definition. It is based on solr.TextField to enable
full text searching. Following that we have a character filter which handles the HTML and the
XML tag stripping. The character filters are invoked before the data is sent to the tokenizer.
This way they operate on un-tokenized data. In our case the character filter strips the HTML
and XML tags, attributes, and so on and then sends the data to the tokenizer which splits the
data by whitespace characters. The one and only filter defined in our type makes the tokens
lowercase to simplify the search.

If you want to check how your data was indexed, remember not to be mistaken when you
choose to store the field contents (attribute stored="true"). The stored value is the
original one sent to Solr, so you won't be able to see the filters in action. If you wish to check
the actual data structures, take a look at the Luke utility (a utility that lets you see the index
structure and field values, and operate on the index). Luke can be found at the following
address: http://code.google.com/p/luke. Instead of using Luke, I decided to use the
analysis capabilities of the Solr administration pages and see how the html field behaves
when we pass the example value provided in the example data file.

Copying the contents of one field to another
Imagine that you have many big XML files that hold information about the books that are
stored on library shelves. There is not much data, just a unique identifier, the name of the
book and the author. One day your boss comes to you and says: "Hey, we want to facet and
sort on the basis of book author". You can change your XML and add two fields, but why do
that, when you can use Solr to do that for you? Well, Solr won't modify your data, but can
copy the data from one field to another. This recipe will show you how to do that.

How to do it...
In order to achieve what we want, we need the contents of the author field to be present in
the fields named author, author_facet, and author_sort.

1.	 Let's assume that our data looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook</field>

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

76

 <field name="author">John Kowalsky</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Some other book</field>
 <field name="author">Jane Kowalsky</field>
 </doc>
</add>

2.	 Now let's add the following fields' definition to the fields section of your
schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true"/>
<field name="author" type="text" indexed="true" stored="true"
multiValued="true"/>
<field name="name" type="text" indexed="true" stored="true"/>
<field name="author_facet" type="string" indexed="true"
stored="false"/>
<field name="author_sort" type="alphaOnlySort" indexed="true"
stored="false"/>

3.	 In order to make Solr copy data from the author field to the author_facet
and author_sort field we need to define the copy fields in the schema.xml
file (place the following entries right after the field section):
<copyField source="author" dest="author_facet"/>
<copyField source="author" dest="author_sort"/>

4.	 Now we can index our example data file by running the following command from the
exampledocs directory (put the data.xml file there):
java -jar post.jar data.xml

How it works...
As you can see in the example, we only have three fields defined in our sample data XML file.
There are two fields which we are not particularly interested in – id and name. The field that
interests us the most is the author field. As I have previously mentioned, we want to place
the contents of that field into three fields:

ff author (the actual field that will be holding the data)

ff author_sort

ff author_facet

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

77

To do that we use copy fields. Those instructions are defined in the schema.xml file, right
after the field definitions; that is, after the </fields> tag. To define a copy field, we need
to specify a source field (attribute source) and a destination field (attribute dest).

After the definitions, like those in the example, Solr will copy the contents of the source fields
to the destination fields during the indexing process. There is one thing that you have to be
aware of – the content is copied before the analysis process takes place. That means that
the data is copied as it is stored in the source.

There's more...
Solr also allows us to do more with copy fields than a simple copying from one field to another.

Copying contents of dynamic fields to one field
You can also copy multiple fields' content to one field. To do that you should define a copy field
like so:

<copyField source="*_author" dest="authors"/>

The definition, like the one previously mentioned, would copy all of the fields that end with
_author to one field named authors. Remember that if you copy multiple fields to one
field, the destination field should be defined as multi-valued.

Limiting the number of characters copied
There may be situations where you only need to copy a defined number of characters from
one field to another. To do that we add the maxChars attribute to the copy field definition.
It can look like the following line of code:

<copyField source="author" dest="author_facet" maxChars="200"/>

The preceding definition tells Solr to copy up to 200 characters from the author field to the
author_facet field. This attribute can be very useful when copying the content of multiple
fields to one field.

Changing words to other words
Let's assume we have an e-commerce client and we are providing a search system based on
Solr. Our index has hundreds of thousands of documents which mainly consist of books. And
everything works fine! Then one day, someone from the marketing department comes into
your office and says that he wants to be able to find books that contain the word "machine"
when he types "electronics" into the search box. The first thing that comes to mind is, "Hey, I'll
do it in the source and index that". But that is not an option this time, because there can be
many documents in the database that have those words. We don't want to change the whole
database. That's when synonyms come into play and this recipe will show you how to use them.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

78

How to do it...
To make the example as simple as possible, I assumed that we only have two fields in our index.

1.	 Let's start by defining our index structure by adding the following field definition
section to the schema.xml file (just add it to your schema.xml file in the
field section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="description" type="text_syn" indexed="true"
stored="true" />

2.	 Now let's add the text_syn type definition to the schema.xml file as shown in
the following code snippet:
<fieldType name="text_syn" class="solr.TextField">
 <analyzer type="query">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.
txt" ignoreCase="true" expand="false" />
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

3.	 As you have noticed there is a file mentioned – synonyms.txt. Let's take a look at
its contents:
machine => electronics

The synonyms.txt file should be placed in the same directory as other
configuration files, which is usually the conf directory.

4.	 Finally we can look at the analysis page of the Solr administration panel to see if the
synonyms are properly recognized and applied:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

How it works...
First we have our field definition. There are two fields, an identifier and a description. The second
one should be of interest r to us ight now. It's based on the new type text_syn which is shown
in the second listing.

Now about the new type, text_syn – it's based on the solr.TextField class. Its definition
is divided; it behaves in one way while indexing and in a different way while querying. So the
first thing we see is the query time analyzer definition. It consists of the tokenizer that splits the
data on the basis of whitespace characters, and then the lowercase filter converts all the tokens
to lowercase. The interesting part is the index time behavior. It starts with the same tokenizer,
but then the synonyms filter comes into play. Its definition starts like all the other filters – with
a factory definition. Next we have a synonyms attribute which defines which file contains the
synonyms definition. Following that we have the ignoreCase attribute which tells Solr to ignore
the case of the tokens and the contents of the synonyms file.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

80

The last attribute named expand is set to false. This means that Solr won't be expanding
the synonyms – all equivalent synonyms will be reduced to the first synonym in the line.
If the attribute is set to true, all synonyms will be expanded to all equivalent forms.

The example synonyms.txt file tells Solr that when the word "machine" appears in the field
based on the text_syn type it should be replaced by "electronics". But not vice versa. Each
synonym rule should be placed in a separate line in the synonyms.txt file. Also remember
that the file should be written in the UTF-8 file encoding. This is crucial and you should always
remember it because Solr will expect the file to be encoded in UTF-8.

As you can see in the provided screenshot from the Solr administration pages, the defined
synonym was properly applied during the indexing phase.

There's more...
There is one more thing associated to using synonyms in Solr.

Equivalent synonyms setup
Let's get back to our example for a second. What if the person from the marketing
department says that he/she wants not only to be able to find books that have the word
"machine" to be found when entering the word "electronics", but also all the books that
have the word "electronics", to be found when entering the word "machine". The answer
is simple. First, we would set the expand attribute (of the filter) to true. Then we would
change our synonyms.txt file to something like this:

machine, electronics

As I said earlier Solr would expand synonyms to equivalent forms.

Splitting text by CamelCase
Let's suppose that you run an e-commerce site with an electronic assortment. The marketing
department can be a source of many great ideas. Imagine that your colleague from this
department comes to you and says that they would like your search application to be able to
find documents containing the word "PowerShot" by entering the words "power" and "shot" into
the search box. So can we do that? Of course, and this recipe will show you how.

How to do it...
1.	 Let's start by creating the following index structure (add this to your schema.xml file

to the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

<field name="description" type="text_split" indexed="true"
stored="true" />

2.	 To split text in the description field, we should add the following type definition
to the schema.xml file:
<fieldType name="text_split" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory"
generateWordParts="1" splitOnCaseChange="1"/>
 <filter class="solr.LowerCaseFilterFactory" />
 </analyzer>
</fieldType>

3.	 Now let's index the following XML file:
<add>
 <doc>
 <field name="id">1</field>
 <field name="description">TextTest</field>
 </doc>
</add>

4.	 Finally, let's run the following query in the web browser:
http://localhost:8983/solr/select?q=description:test

You should get the indexed document as the response:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">description:test</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="description">TextTest</str></doc>
 </result>
 </response>

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

82

How it works...
Let's see how things work. First of all we have the field definition part of the schema.xml file.
This is pretty straightforward. We have two fields defined–one that is responsible for holding
information about the identifier (the id field) and the second one that is responsible for the
product description (the description field).

Next we see the interesting part. We name our type text_split and have it based on
a text type, solr.TextField. We also told Solr that we want our text to be tokenized
by whitespaces by adding the whitespace tokenizer (the tokenizer tag). To do what we
want to do–split by case change–we need more than this. Actually we need a filter named
WordDelimiterFilter which is created by the solr.WordDelimiterFilterFactory
class and a filter tag. We also need to define the appropriate behavior of the filter, so we
add two attributes – generateWordParts and splitOnCaseChange. The values of those
two parameters are set to 1 which means that they are turned on. The first attribute tells Solr
to generate word parts, which means that the filter will split the data on non-letter characters.
We also add the second attribute which tells Solr to split the tokens by case change.

What will that configuration do with our sample data? As you can see we have one document
sent to Solr. The data in the description field will be split into two words: text and test.
Please remember that we won't see the analyzed text in the Solr response, we only see the
stored fields and the original content of those, not the analyzed one.

Splitting text by whitespace only
One of the most common problems that you probably came across is having to split text
with whitespaces in order to segregate words from each other, to be able to process it further.
This recipe will show you how to do it.

How to do it...
1.	 Let's start with the assumption that we have the following index structure (add this

to your schema.xml file in the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="description_string" type="string" indexed="true"
stored="true" />
<field name="description_split" type="text_split" indexed="true"
stored="true" />

2.	 To split the text in the description field, we should add the following type definition:
<fieldType name="text_split" class="solr.TextField">
 <analyzer>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 </analyzer>
</fieldType>

3.	 To test our type, I've indexed the following XML file:
<add>
 <doc>
 <field name="id">1</field>
 <field name="description_string">test text</field>
 <field name="description_text">test text</field>
 </doc>
</add>

4.	 Finally, let's run the following query in the web browser:
http://localhost:8983/solr/select?q=description_split:text

In the response to the preceding query, we got the indexed document:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">description_split:text</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="description_string">test text</str>
 <str name="description_split">test text</str></doc>
 </result>
 </response>

5.	 On the other hand, we won't get the indexed document in the response after
running the following query:
http://localhost:8983/solr/select?q=description_string:text

The response to the preceding query:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

84

 <str name="q">description_string:text</str>
 </lst>
 </lst>
 <result name="response" numFound="0" start="0">
 </result>
 </response>

How it works...
Let's see how things work. First of all we have the field definition part of the schema.xml
file. This is pretty straightforward. We have three fields defined – one for the identifier of the
document (the id field), and one named description_string which is based on a string
field and thus not analyzed. The third one is the description_split field which is based
on our text_split type and will be tokenized on the basis of whitespace characters.

Next we see the interesting part. We named our type text_split and had it based on a text
type – solr.TextField. We told Solr that we want our text to be tokenized by whitespaces
by adding a whitespace tokenizer (the tokenizer tag). Because there are no filters defined,
the text will only be tokenized by whitespace characters and nothing more.

That's why our sample data in the field description_text will be split into two words,
test and text. On the other hand, the text in the description_string field won't be
split. That's why the first example query will result in one document in the response, while
the second example won't find the example document. Please remember that we won't see
the analyzed text in the Solr response, we only see stored fields and we see the original
content of those, not the analyzed one.

Making plural words singular without
stemming

Nowadays it's nice to have stemming algorithms (algorithms that will reduce words to their
stems or root form) in your application, which will allow you to find the words such as cat
and cats by typing cat. But let's imagine you have a search engine that searches through
the contents of books in the library. One of the requirements is changing the plural forms
of the words from plural to singular – nothing less, nothing more. Can Solr do that? Yes,
the newest version can and this recipe will show you how to do that.

How to do it...
1.	 First of all let's start with a simple two field index (add this to your schema.xml

file to the field definition section):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

<field name="id" type="string" indexed="true" stored="true"
required="true"/>
<field name="description" type="text_light_stem" indexed="true"
stored="true" />

2.	 Now let's define the text_light_stem type which should look like this (add this
to your schema.xml file):
<fieldType name="text_light_stem" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.EnglishMinimalStemFilterFactory" />
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

3.	 Now let's check the analysis tool of the Solr administration pages. You should
see that words such as ways and, keys are changed to their singular forms. Let's
check the for that words using the analysis page of the Solr administration pages:

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

86

How it works...
First of all we need to define the fields in the schema.xml file. To do that we add the
contents from the first example into that file. It tells Solr that our index will consist of two
fields – the id field which will be responsible for holding information about the unique
identifier of the document, and the description file which will be responsible for holding
the document description.

The description field is actually where the magic is being done. We defined a new field type
for that field and we called it text_light_stem. The field definition consists of a tokenizer
and two filters. If you want to know how this tokenizer behaves please refer to the Splitting text
by whitespace only recipe in this chapter. The first filter is a new one. This is the light stemming
filter that we will use to perform minimal stemming. The class that enables Solr to use that
filter is solr.EnglishMinimalStemFilterFactory. This filter takes care of the process of
light stemming. You can see that using the analysis tools of the Solr administration panel. The
second filter defined is the lowercase filter – you can see how it works by referring to the How
to lowercase the whole string recipe in this chapter.

After adding this to your schema.xml file you should be able to use the light stemming
algorithm.

There's more...
Light stemming supports a number of different languages. To use the light stemmers for
your respective language, add the following filters to your type:

Language Filter
Russian solr.RussianLightStemFilterFactory

Portuguese solr.PortugueseLightStemFilterFactory

French solr.FrenchLightStemFilterFactory

German solr.GermanLightStemFilterFactory

Italian solr.ItalianLightStemFilterFactory

Spanish solr.SpanishLightStemFilterFactory

Hungarian solr.HungarianLightStemFilterFactory

Swedish solr.SwedishLightStemFilterFactory

Finish solr.FinnishLightStemFilterFactory

Indonesian solr.IndonesianStemFilterFactory
(with stemDerivational="false" attribute)

Norwegian solr.NorwegianLightStemFilterFactory

In the case of solr.IndonesianStemFilterFactory, you need to add the
stemDerivational="false" attribute in order to have it working as a light stemmer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

Lowercasing the whole string
Imagine you have a system where you only want to have perfect matches for names of
the documents. No matter what the cause of such a decision is, you would want such a
functionality. However there is one thing you would like to have – you would like your search
to be case independent, so it doesn't matter if the document or query is lower cased or
uppercased. Can we do something with that in Solr? Of course Solr can do that, and this
recipe will describe how to do it.

How to do it...
1.	 We start by defining the following index structure (add this to your schema.xml file

in the field definition section):
<field name="id " type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="string_lowercase" indexed="true"
stored="true" />
<field name="description" type="text" indexed="true" stored="true"
/>

2.	 To make our strings lowercase, we should add the following type definition to the
schema.xml file:
<fieldType name="string_lowercase" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

3.	 In order to test if everything is working as it should we need to index the following
XML file:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook</field>
 <field name="description">Simple description</field>
 </doc>
</add>

4.	 Then we will run the following query in the web browser:
http://localhost:8983/solr/select?q=name:"solr cookbook"

You should get the indexed document in response. You should also be able to get the
indexed document in response to the following query:

http://localhost:8983/solr/select?q=name:"solr Cookbook"

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

88

How it works...
Let's see how things work. First of all we have the field definition part of the schema.xml file.
This is pretty straightforward. We have three fields defined. First, the field named id which is
responsible for holding our unique identifier. The second one is the name field which is actually
our lowercased string field. The third field will hold the description of our documents and is
based on the standard text type defined in the example Solr deployment.

Now let's get back to our name field. It's based on the string_lowercase type. The string_
lowercase type consists of an analyzer which is defined as a tokenizer and one filter. The
solr.KeywordTokenizerFactory filter tells Solr that the data in that field should not be
tokenized in any way. It just should be passed as a single token to the token stream. Next we
have our filter, which changes all the characters to their lowercased equivalents. And that's how
this field analysis is performed.

The example queries show how the field behaves. It doesn't matter if you type lowercase or
uppercase characters, the document will be found anyway. What matters is that you must type
the whole string as it is because we used the keyword tokenizer which, as I already said, is not
tokenizing but just passing the whole data through the token stream as a single token.

Storing geographical points in the index
Imagine that up till now your application stores information about companies – not much
information, just unique identification and the company name. But now, your client wants
to store the location of the companies. In addition to that, your users would like to sort by
distance and filter by distance from a given point. Is this doable with Solr? Of course it is
and this recipe will show you how to do it.

How to do it...
1.	 For the purpose of this recipe, let's create a sample index structure. To do this, describe

the companies that we store in the index with three fields which are defined as follows
(add this to your schema.xml file to the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="location" type="location" indexed="true"
stored="true" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

89

2.	 Next we will also add one dynamic field (add this to your schema.xml file in the field
definition section):
<dynamicField name="*_coordinate" type="tdouble" indexed="true"
stored="false" />

3.	 The next step is to define the location type which should look like the following code:
<fieldType name="location" class="solr.LatLonType"
subFieldSuffix="_coordinate"/>

4.	 In addition to that, we will need the tdouble field type, which should look like the
following code:
<fieldType name="tdouble" class="solr.TrieDoubleField"
precisionStep="4" positionIncrementGap="0"/>

5.	 The next step is to create the example data looking like the following code (I named
the data file task9.xml):
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr.pl company</field>
 <field name="location">54.02,23.10</field>
 </doc>
</add>

6.	 And now let's index our data. To do that, we run the following command from the
exampledocs directory (put the task9.xml file there):
java -jar post.jar task9.xml

7.	 After indexing we should be able to use the query, such as the following one, to get
our data:
http://localhost:8983/solr/select?q=*:*&fq={!geofilt
sfield=location}&pt=54.00,23.00&d=10

The response should look like this:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="pt">54.00,23.00</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

90

 <str name="d">10</str>
 <str name="fq">{!geofiltsfield=location}</str>
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr.pl company</str>
 <str name="location">54.02,23.10</str>
 </doc>
 </result>
 </response>

How it works...
First of all we have three fields and one dynamic field defined in our schema.xml file. The first
field is the one responsible for holding the unique identifier. The second one holds the name of
the company. The third one named location is responsible for holding geographical points
and is based on the location type. The dynamic field – *_coordinate will be used internally
by our location type. It uses the tdouble field which was taken from the schema.xml file
distributed with Solr.

Next we have our location type definition. It's based on the solr.LatLonType class which
is specially designed for spatial search and is defined by a single attribute – subFieldSuffix.
That attribute specifies which fields (in our case it's the dynamic *_coordinate field) will be
used internally for holding the actual values of latitude and longitude.

So how does this type of field actually work? When defining a two-dimensional field, like we
did, there are actually three fields created in the index. The first field is named like the field we
added in the schema.xml file, so in our case it is location. This field will be responsible for
holding the stored value of the field. And one more thing – this field will only be created when
we set the field attribute store to true.

The next two fields are based on the defined dynamic field. Their names will be location
_0_coordinate and location_1_coordinate in our case. First we have the field
name, the _ character, then the index of the value, and finally the suffix defined by the
subFieldSuffix attribute of the type.

We can now look at the way the data is indexed. Please take a look at the example data file.
You can see that the values in each pair are separated by the comma character, and that's
how you can add the data to the index:

http://localhost:8983/solr/select?q=*:*&fq={!geofilt sfield=location}
&pt=54.00,23.00&d=10

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

91

Querying is a bit different. We send a query to retrieve all the documents from the index
(q=*:*). In addition to that, we want to filter the results by distance (the geofilt filter) with
the use of the location field (sfield=location). fq={!geofiltsfield=location}
uses the Solr local params syntax to send a distance filter. It can look strange comparing it to
a standard query, but it works. In addition to that, we've specified the point we will calculate
the distance from (the pt parameter) as 54.00,23.00. This is a pair of latitude and longitude
values separated by a comma character. The last parameter is d, which specifies the maximum
distance that documents can be, from the given point, to be considered as a match. We
specified it as 10 kilometers (d=10). As you can see, even though our document had its point
defined as 54.02,23.10 we found it with our query because of the distance we specified.

Stemming your data
One of the most common requirements I meet is stemming – the process of reducing the
word to their root form (or stems). Let's imagine the book e-commerce store, where you store
the books' names and descriptions. We want to be able to find words such as shown or showed
when you type the word show and vice versa. To achieve that we can use stemming algorithms.
This recipe will show you how to add stemming to your data analysis.

How to do it...
1.	 We need to start with the index structure. Let's assume that our index consists

of three fields (add this to your schema.xml file to the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="description" type="text_stem" indexed="true"
stored="true" />

2.	 Now let's define our text_stem type which should look like the following code:
<fieldType name="text_stem" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" />
 </analyzer>
</fieldType>

3.	 Now we can index our data – to do that we need to create an example data file,
for example, the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr cookbook</field>

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

92

 <field name="description">This is a book that I'll show</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Solr cookbook 2</field>
 <field name="description">This is a book I showed</field>
 </doc>
</add>

4.	 After indexing, we can test how our data was analyzed. To do that, let's run the
following query:
http://localhost:8983/solr/select?q=description:show

The result we get from Solr is as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">description:show</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>
 <arr name="description">
 <str>This is a book that I'll show</str>
 </arr>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Solr cookbook 2</str>
 <arr name="description">
 <str>This is a book I showed</str>
 </arr>
 </doc>
 </result>
 </response>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

93

That's right, Solr found two documents matching the query which means that our fields and
types are working as intended.

How it works...
Our index consists of three fields; one holding the unique identifier of the document, the
second one holding the name of the document, and the third one holding the document
description. The last field is the field that will be stemmed.

The stemmed field is based on a Solr text field and has an analyzer that is used at query
and indexing time. It is tokenized on the basis of the whitespace characters, and then the
stemming filter is used. What does the filter do? It tries to bring the words to its root form,
which means that words such as shows, showing, and show will all be changed to show
– or at least they should be changed to that form.

Please note that in order to properly use stemming algorithms they should be used at query
and indexing time. This is a must because of the stemming results.

As you can see, our test data consists of two documents. Take a look at the description.
One of the documents contains the word showed and the other has the word show in
their description fields. After indexing and running the sample query, Solr would return
two documents in the results which means that the stemming did its job.

There's more...
There are too many languages that have stemming support integrated into Solr to mention
them all. If you are using a language other than English, please refer to the http://wiki.
apache.org/solr/LanguageAnalysis page of the Solr Wiki to find the appropriate filter.

Preparing text to perform an efficient
trailing wildcard search

Many users coming from traditional RDBMS systems are used to wildcard searches. The most
common of them are the ones using * characters which means zero or more characters. You
have probably seen searches like the one as follows:

AND name LIKE 'ABC12%'

So how to do that with Solr and not kill our Solr server? This task will show you how to prepare
your data and make efficient searches.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

94

How to do it...
1.	 The first step is to create a proper index structure. Let's assume we have the following

one (add this to your schema.xml file to the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="string_wildcard" indexed="true"
stored="true" />

2.	 Now, let's define our string_wildcard type (add this to the schema.xml file):
<fieldType name="string_wildcard" class="solr.TextField">
 <analyzer type="index">	
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.EdgeNGramFilterFactory" minGramSize="1"
 maxGramSize="25" side="front"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 </analyzer>
</fieldType>

3.	 The third step is to create the example data which looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">XYZ1234ABC12POI</field>
 </doc>
</add>

4.	 Now send the following query to Solr:
http://localhost:8983/solr/select?q=name:XYZ1

The Solr response for the previous query is as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">name:XYZ1</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

95

 <str name="id">1</str>
 <str name="name">XYZ1234ABC12POI</str>
 </doc>
 </result>
 </response>

As you can see, the document has been found, so our setup is working as intended.

How it works...
First of all let's look at our index structure defined in the schema.xml file. We have two fields
– one holding the unique identifier of the document (the id field) and the second one holding
the name of the document (the name field) which is actually the field we are interested in.

The name field is based on the new type we defined – string_wildcard. This type is
responsible for enabling trailing wildcards, the ones that will enable the LIKE 'WORD%' SQL
queries. As you can see the field type is divided into two analyzers, one for the data analysis
during indexing and the other for query processing. The querying analyzer is straight; it just
tokenizes the data on the basis of whitespace characters. Nothing more, nothing less.

Now the indexing time analysis (of course we are talking about the name field). Similar to
the query time, during indexing the data is tokenized on the basis of whitespace characters,
but there is also an additional filter defined. The solr.EdgeNGramFilterFactory class
is responsible for generating the filter called n-grams. In our setup, we tell Solr that the
minimum length of an n-gram is 1 (the minGramSize attribute) and the maximum length is
25 (the maxGramSize attribute). We also defined that the analysis should be started from the
beginning of the text (the side attribute set to front). So what would Solr do with our example
data? It will create the following tokens from the example text: X, XY, XYZ, XYZ1, XYZ12, and
so on. It will create tokens by adding the next character from the string to the previous token,
up to the maximum length of the n-gram filter that is given in the filter configuration.

So by typing the example query, we can be sure that the example document will be found
because of the n-gram filter defined in the configuration of the field. We also didn't define
the n-gram filter in the querying stage of analysis because we didn't want our query to be
analyzed in such a way that it could lead to false positive hits.

This functionality, as described, can also be used successfully to provide autocomplete
features to your application (if you are not familiar with the autocomplete feature please
take a look at http://en.wikipedia.org/wiki/Autocomplete).

Please remember that using n-grams will make your index a bit larger. Because of that you
should avoid having n-grams on all the fields in the index. You should carefully decide which
fields should use n-grams and which should not.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

96

There's more...
If you would like your field to be able to simulate SQL LIKE '%ABC' queries, you should
change the side attribute of the solr.EdgeNGramFilterFactory class to the back
value. The configuration should look like the following code snippet:

<filter class="solr.EdgeNGramFilterFactory" minGramSize="1"
maxGramSize="25" side="back"/>

It would change the end from which Solr starts to analyze the data. In our case it would start
from the end, and thus would produce n-grams as follows: I, OI, POI,2POI, 12POI, and so
on.

See also
ff If you want to propose another solution for that kind of search, please refer to the

recipe Splitting text by numbers and non-whitespace characters in this chapter

Splitting text by numbers and
non-whitespace characters

Analyzing the text data is not only about stemming, removing diacritics (if you are not familiar
with the word, please take a look at http://en.wikipedia.org/wiki/Diacritic), and
choosing the right format for the data. Let's assume that our client wants to be able to search
by words and numbers that construct product identifiers. For example, he would like to be able
to find the product identifier ABC1234XYZ by using ABC, 1234, or XYZ.

How to do it...
1.	 Let's start with the index that consists of three fields (add this to your schema.xml

file to the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true"/>
<field name="description" type="text_split" indexed="true"
stored="true" />

2.	 The second step is to define our text_split type which should look like the
following code (add this to your schema.xml file):
<fieldType name="text_split" class="solr.TextField">
 <analyzer>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

97

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory"
generateWordParts="1" generateNumberParts="1" splitOnNumerics="1"
/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

3.	 Now you can index your data. To do that let's create an example data file:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Test document</field>
 <field name="description">ABC1234DEF BL-123_456
 adding-documents</field>
 </doc>
</add>

4.	 After indexing we can test how our data was analyzed. To do that let's run the
following query:
http://localhost:8983/solr/select?q=description:1234

Solr found our document which means that our field is working as intended.
The response from Solr will be as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">description:1234</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Test document</str>
 <str name="description">ABC1234DEF BL-123_456 adding-
documents</str></doc>
 </result>
 </response>

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

98

How it works...
We have our index defined as three fields in the schema.xml file. We have a unique identifier
(an id field) indexed as a string value. We have a document name (the name field) indexed as
text (type which is provided with the example deployment of Solr), and a document description
(a description field) which is based on the text_split field which we defined ourselves.

Our type is defined to make the same text analysis, both on query time and on index time.
It consists of the whitespace tokenizer and two filters. The first filter is where the magic is
done. The solr.WordDelimiterFilterFactory behavior, in our case, is defined by
the following parameters:

ff generateWordParts: If this parameter is set to 1, it tells the filter to generate
parts of the word that are connected by non-alphanumeric characters such as
the dash character. For example, token ABC-EFG would be split into ABC and EFG.

ff generateNumberParts: If this parameter is set to 1, it tells the filter to generate
words from numbers connected by non-numeric characters, such as the dash
character. For example, token 123-456 would be split into 123 and 456.

ff splitOnNumerics: If this parameter is set to 1, it tells the filter to split letters
and numbers from each other. This means that token ABC123 would be split in
to ABC and 123.

The second filter is responsible for changing the words that lowercased the equivalents and
is discussed in the recipe How to lowercase the whole string in this chapter.

Therefore, after sending our test data to Solr we can run the example query to see if we
defined our filter properly. In addition, you probably know the result; yes, the result will contain
one document – the one that we send to Solr. That is because the word ABC1234DEF is split
into ABC, 1234, and DEF tokens, and thus can be found by the example query.

There's more...
In case you would like to preserve the original token that is passed to solr.
WordDelimiterFilterFactory, add the following attribute to the filter definition:

preserveOriginal="1"

See also
ff If you would like to know more about solr.WordDelimiterFilterFactory,

please refer to the recipe Splitting text by CamelCase in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

99

Using Hunspell as a stemmer
Solr supports numerous stemmers for various languages. You can use various stemmers for
English, and there are ones available for French, German, and most of the European languages.
But sometimes they provide stemming results that are not of great quality. Alternatively, maybe
you are wondering if there is a stemmer out there that supports your language, which is not
included in Solr. No matter what the reason, if you are looking for a different stemmer you
should look at the Hunspell filter if it suits your needs, and this recipe will show you how to
use it in Solr.

Getting ready
Before starting, please check the http://wiki.openoffice.org/wiki/Dictionaries
page to see if Hunspell supports your language.

How to do it...
1.	 We should start by creating an index structure (just add the following entries to the

fields section of your schema.xml file) which looks like the following code:
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text_english" indexed="true"
stored="true"/>
<field name="description" type="text_english" indexed="true"
stored="true" />

2.	 Now we should define the text_english type as follows (if you don't have it in your
schema.xml file, please add it to the types section of the file):
<fieldType name="text_english" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.PorterStemFilterFactory"/>
 </analyzer>
</fieldType>

3.	 Let's assume that we are not satisfied with the quality of solr.
PorterStemFilterFactory and we would like to have that improved
by using Hunspell. In order to do that, we need to change the solr.
PorterStemFilterFactory definition to the following one:
<filter class="solr.HunspellStemFilterFactory" dictionary="en_
GB.dic" affix="en_GB.aff" ignoreCase="true" />

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

100

So the final text_english type configuration would look like the following code:
<fieldType name="text_english" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.HunspellStemFilterFactory" dictionary=
 "en_GB.dic" affix="en_GB.aff" ignoreCase="true" />
 </analyzer>
</fieldType>

4.	 The last thing we need to do is place the en_GB.dic and en_GB.aff files in the
Solr conf directory (the one where you have all your configuration files stored). Those
files can be found at the http://wiki.openoffice.org/wiki/Dictionaries
page. They are the dictionaries for English used in Great Britain. And that's all;
nothing more needs to be done.

How it works...
Our index structure is very simple – it contains three fields of which two (name and
description) are used for full text searching, and we want those fields to use the text_
english field type and thus use solr.HunspellStemFilterFactory for stemming.

The configuration of the solr.HunspellStemFilterFactory filter factory is not difficult.
Of course, there are a few attributes of the filter tag that need to be specified:

ff class: This specifies the class implementing the filter factory we want to use,
which in our case is solr.HunspellStemFilterFactory.

ff dictionary: This specifies the name of the .dic file of the dictionary we want
to use.

ff affix: This specifies the name of the .aff file of the dictionary we want to use.

ff ignoreCase: This is used to ignore cases when matching words against the
dictionary. In our case, we want to ignore cases.

The last thing we need to do is provide Solr with the dictionary files so that the Hunspell filter
can do its work. Although this is simple, this part is crucial. The dictionaries define how well
Hunspell will work. Before using a new dictionary, you should always properly conduct A/B
testing and see if things did not get worse in your case.

One last thing about the dictionaries. If you would like to use other languages with Hunspell,
the only thing you will need to do is provide the new dictionary file and change the name
of the dictionaries, so change the dictionary and affix attributes of the solr.
HunspellStemFilterFactory definition.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

101

Using your own stemming dictionary
Sometimes, stemmers provided with Lucene and Solr don't do what you would like them
to do. That's because most of them are based on an algorithmic approach and even the
best algorithms can come to a place where you won't like the results of their work and you
would like to make some modifications. Of course, modifications to the algorithm code can
be challenging and we don't usually do that. The good thing is that Solr supports a method
of overriding the stemmer work and this recipe will show you how to use it.

Getting ready
Before we continue please remember that the method described in this recipe may not work
with custom stemmers that are not provided with Solr.
How to do it... Let's say that we want some of the words to be stemmed in a way we want. For
example,
we want the word dogs to be stemmed as doggie (of course that's only an example).

1.	 What we have to do first is write the words dogs and doggie in a file (let's call it
override.txt). Words should be separated from each other by a tab character
and each line of the file should contain a single stemming overwrite. For example,
our override.txt file could look like this:
dogs doggie

2.	 Now we should put the override.txt file in the same directory as the schema.
xml file (usually its conf). Please remember to have that file written in UTF-8
encoding. If you have characters from the classic ASCII character set, they won't
be recognized properly if you don't use UTF-8.

3.	 Next we need to add the solr.StemmerOverrideFilterFactory filter to
our text types. I assume we only use text_english with the following definition
(put the following definition to your types section of the schema.xml file):
<fieldType name="text_english" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.PorterStemFilterFactory"/>
 </analyzer>
</fieldType>

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

102

In order for our list of protected words to work, we need to put solr.
StemmerOverrideFilterFactory before the stemming, which is solr.
PorterStemFilterFactory in our case. The final type definition for text_
english would look like the following code:
<fieldType name="text_english" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StemmerOverrideFilterFactory"
 dictionary="dict.txt" />
 <filter class="solr.PorterStemFilterFactory"/>
 </analyzer>
</fieldType>

This is what the analysis page of the Solr administration pages shows:

4.	 That's all. Now, the fields that are based on the text_english type will not
be stemmed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

103

How it works...
The work of the solr.StemmerOverrideFilterFactory class is simple – it changes the
words we want it to change and then marks them as protected so that the stemmer won't do
any further processing of those words. In order for this functionality to work properly, you should
remember to put solr.StemmerOverrideFilterFactory before any stemmers in your
analysis chain.

The actual configuration of solr.StemmerOverrideFilterFactory is pretty simple and
similar to other filters. It requires two attributes; the usual class attribute, which informs Solr
which filter factory should be used in order to create the filter, and the dictionary attribute,
which specifies the name of the file containing the dictionary that we want to use
for our custom stemming.

Looking at the analysis page of the Solr administration pages, we can see that our dogs
word was protected from being stemmed with the default stemmer and changed to what
we wanted, that is, doggie.

Protecting words from being stemmed
Sometimes, the stemming filters available in Solr do more than you would like them to do.
For example, they can stem brand names or the second name of a person. Sometimes, you
would like to protect some of the words that have a special meaning in your system or you
know that some words would cause trouble to a stemmer or stemmers. This recipe will show
you how to do it.

Getting started
Before we continue, please remember that the method described in this recipe may not work
with custom stemmers that are not provided with Solr.

How to do it...
In order to have the defined words protected we need a list of them. Let's say that we don't
want the words cats and dogs to be stemmed.

1.	 To achieve that, we should start by writing the words we want to be protected from
stemming into a file. Let's create the file called dontstem.txt with the following
contents:
cats
dogs

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

104

2.	 Now let's put the created file in the same directory as the schema.xml file (usually
it's the conf directory). Please remember to have that file written in UTF-8 encoding.
If you have characters from the classic ASCII character set they won't be recognized
properly if you don't use UTF-8.

3.	 Now, we need to add the solr.KeywordMarkerFilterFactory filter to our text
types. I assume we only use the text_english type with the following definition:
<fieldType name="text_english" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.PorterStemFilterFactory"/>
 </analyzer>
</fieldType>

In order for our list of protected words to work, we need to put solr.
KeywordMarkerFilterFactory before the stemming, which is solr.
PorterStemFilterFactory in our case. So the final type definition for the text_
english type would look like the following code:
<fieldType name="text_english" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.KeywordMarkerFilterFactory"
 protected="dontstem.txt" />
 <filter class="solr.PorterStemFilterFactory"/>
 </analyzer>
</fieldType>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

105

This is what the analysis page of the Solr administration pages shows:

4.	 That's all. Now, the fields that are based on the text_english type won't
be stemmed.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Text Data

106

How it works...
The whole idea is pretty simple. With the use of solr.KeywordMarkerFilterFactory,
we mark the protected words and that information is used by the stemmers available in Solr
and Lucene. In order for this functionality to work properly, you should remember to put the
solr.KeywordMarkerFilterFactory filter before any stemmers in your analysis chain.

The actual configuration of solr.KeywordMarkerFilterFactory is pretty simple and
similar to other filters. It requires two attributes; the usual class attribute, which informs
Solr which filter factory should be used in order to create the filter, and the attribute protected
which specifies the name of the file containing words that we want to protect from stemming.

Looking at the analysis page of the Solr administration pages, we can see that our
dogs word was protected from being stemmed, compared to the birds word which
was changed to bird.

www.it-ebooks.info

http://www.it-ebooks.info/

4
Querying Solr

In this chapter, we will cover:

ff Asking for a particular field value

ff Sorting results by a field value

ff How to search for a phrase, not a single word

ff Boosting phrases over words

ff Positioning some documents over others in a query

ff Positioning documents with words closer to each other first

ff Sorting results by a distance from a point

ff Getting documents with only a partial match

ff Affecting scoring with functions

ff Nesting queries

ff Modifying returned documents

ff Using parent-child relationships

ff Ignoring typos in terms of the performance

ff Detecting and omitting duplicate documents

ff Using field aliases

ff Returning a value of a function in the results

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

108

Introduction
Making a simple query is not a hard task, but making a complex one, with faceting, local
params, parameters dereferencing, and phrase queries can be a challenging task. On the top
of all that, you must remember to write your query with performance factors in mind. That's
why something that is simple at first sight can turn into something more challenging such as
writing a good, complex query. This chapter will try to guide you through some of the tasks you
may encounter during your everyday work with Solr.

Asking for a particular field value
There are many cases where you will want to ask for a particular field value. For example,
when searching for the author of a book in the Internet library or an e-commerce shop. Of
course Solr can do that, and this recipe will show you how to do it.

How to do it...
1.	 Let's start with the following index structure (just add the following to your

schema.xml file to the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text" indexed="true" stored="true" />
<field name="author" type="string" indexed="true" stored="true"/>

2.	 To ask for a value in the author field, send the following query to Solr:
http://localhost:8983/solr/select?q=author:rafal

That's all. The documents you'll get from Solr will be the ones with the requested value in the
author field. Remember that the query shown in the example uses the standard query parser,
not DisMax.

How it works...
We defined three fields in the index, but this was only for the purpose of the example. As
you can see in the previous query, to ask for a particular field value, you need to send a q
parameter syntax such as FIELD_NAME:VALUE, and that's all there is to it. Of course you can
add the logical operator to the query to make it more complex. Remember that if you omit the
field name from the query your values will be checked again in the default search field that is
defined in the schema.xml file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

109

There's more...
When asking for a particular field value, there are a few things that are useful to know:

Querying for a particular value using the DisMax query parser
Sometimes you may need to ask for a particular field value when using the DisMax query parser.
Unfortunately the DisMax query parser doesn't support full Lucene query syntax and thus you
can't send a query like that, but there is a solution to it. You can use the extended DisMax query
parser which is an evolved DisMax query parser. It has the same list of functionalities as DisMax
and it also supports full Lucene query syntax. The following is the query shown in this task, but
by using edismax, it would look like the following:

http://localhost:8983/solr/select?q=author:rafal&defType=edismax

Querying for multiple values in the same field
You may sometimes need to ask for multiple values in a single field. For example, let's
suppose that you want to find the solr and cookbook values in the title field. To do
that you should run the following query (notice the brackets surrounding the values):

http://localhost:8983/solr/select?q=author:(solr cookbook)

Sorting results by a field value
Imagine an e-commerce site where you can't choose the sorting order of the results, you
can only browse the search results page-by-page and nothing more. That's terrible, right?
That's why with Solr you can specify the sort fields and order in which your search results
should be sorted. This recipe will show you how to do it.

How to do it...
Let's assume that you want to sort your data by an additional field, for example, the field that
contains the name of the author of the book.

1.	 First we add the following to your schema.xml file's field section:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text" indexed="true" stored="true" />
<field name="author" type="string" indexed="true" stored="true"/>

2.	 Now, let's create a simple data file which will look like the following code:
<add>
 <doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

110

 <field name="id">1</field>
 <field name="title">Solr cookbook</field>
 <field name="author">Rafal Kuc</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Solr results</field>
 <field name="author">John Doe</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Solr perfect search</field>
 <field name="author">John Doe</field>
 </doc>
</add>

3.	 As I wrote earlier, we want to sort the result list by author name in ascending order.
Additionally, we want the books that have the same author to be sorted by relevance
in the descending order. To do that we must send the following query
to Solr:
http://localhost:8983/solr/select?q=solr&sort=author+asc,
score+desc

The results returned by Solr are as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">solr</str>
 <str name="sort">author asc,score desc</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">2</str>
 <str name="title">Solr results</str>
 <str name="author">John Doe</str>
 </doc>
 <doc>
 <str name="id">3</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

111

 <str name="title">Solr perfect search</str>
 <str name="author">John Doe</str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Solr cookbook</str>
 <str name="author">Rafal Kuc</str>
 </doc>
 </result>
 </response>

As you can see, our data is sorted exactly how we wanted it to be.

How it works...
As you can see I defined three fields in our index. The most interesting to us is the author
field, based on which we will perform the sorting operation. Notice one thing – the type on
which the field is based is the string type. In order to sort the values of the field from the
index, you need to prepare your data well, that is, use the appropriate number types (the ones
based on the Trie types), and to sort the text field using the string field type (or text type
using the KeywordTokenizer type and a lowercase filter).

The following what you see is the data which is very simple – it only adds three documents to
the index.

I've added one additional parameter to the query that was sent to Solr – the sort parameter.
This parameter defines the sort field with the order. Each field must be followed by the order in
which the data should be sorted; asc which tells Solr to sort the data in the ascending order,
and desc which tells Solr to sort in the descending order. Pairs of field and order should be
delimited with the comma character as shown in the example.

The result list that Solr returned tells us that we did a perfect job on defining the sort order.

How to search for a phrase, not a single
word

Imagine that you have an application that searches within millions of documents that
are generated by a law company. One of the requirements is to search the titles of the
documents as a phrase, but with stemming and lowercasing. So a string-based field is
not an option. In that case, is it possible to achieve this using Solr? Yes, and this recipe will
show you how to do that.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

112

How to do it...
1.	 First let's define the following type (add this part to your schema.xml file):

<fieldType name="text" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SnowballPorterFilterFactory"
language="English"/>
 </analyzer>
</fieldType>

2.	 Now let's add the following fields to our schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text" indexed="true" stored="true" />

3.	 The third step is to create an example data which looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">2012 report</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">2009 report</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">2012 draft report</field>
 </doc>
</add>

4.	 Now let's try to find the documents that have the phrase 2012 report in them.
To do that, make the following query to Solr:
http://localhost:8983/solr/select?q=title:"2012 report"

The result should be as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

113

 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">title:"2012 report"</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="title">2012 report</str>
 </doc>
 </result>
 </response>

The debug query (the debugQuery=on parameter) shows us the Lucene query that
was created:

<str name="parsedquery">PhraseQuery(title:"2012 report")</str>

As you can see we only got one document which is perfectly good. Now let's see how
that happened.

How it works...
As I said in the Introduction section, our requirement was to search for phrases over fields
that are stemmed and lowercased. If you want to know more about stemming please refer
to the Stemming your data recipe in Chapter 3, Analyzing Your Text Data. Lowercasing is
described in the Lowercasing the whole string recipe in Chapter 3.

We only need two fields because we will only search the title, and return the title and
unique identifier of the field; thus the configuration is as shown in the example.

The example data is quite simple so I'll skip commenting on it.

The query is something that we should be more interested in. The query is made to the standard
Solr query parser, thus we can specify the field name and the value we are looking for. The query
differs from the standard word searching query by the use of the " character at the start and
end of the query. It tells Solr to use the phrase query instead of the term query. Using the phrase
query means that Solr will search for the whole phrase not a single word. That's why only the
document with identifier 1 was found, because the third document did not match the phrase.

The debug query only ensured that the phrase query was made instead of the usual term
query, and Solr showed us that we created the right query.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

114

There's more...
When using queries there is one thing that is very useful to know.

Defining the distance between words in a phrase
You may sometimes need to find documents that match a phrase, but are separated by some
other words. Let's assume that you would like to find the first and third document in
our example. This means that you want documents that could have an additional word
between the word 2010 and report. To do that, we add a so-called phrase slop to the
phrase. In our case the distance (slop) between words can be the maximum of one word, so
we add the ~1 part after the phrase definition:

http://localhost:8983/solr/select?q=title:"2012 report"~1

Boosting phrases over words
Imagine you are a search expert at a leading e-commerce shop in your region. One day
disaster strikes and your marketing department says that the search results are not good
enough. They would like you to favor documents that have the exact phrase typed by the
user over the documents that have matches for separate words. Can you do it? Of course
you can, and this recipe will show you how to achieve it.

Getting ready
Before you start reading this task I suggest you read the How to search for a phrase not a
single word recipe in this chapter. It will allow you to understand the recipe better.

How to do it...
I assume that we will be using the DisMax query parser, not the standard one. We will also
use the same schema.xml file that was used in the How to search for a phrase not a single
word recipe in this chapter.

1.	 Let's start with our sample data file which looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Annual 2012 report last draft</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">2011 report</field>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

115

 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">2012 draft report</field>
 </doc>
</add>

2.	 As I already mentioned, we would like to boost those documents that have phrase
matches over others matching the query. To do that, run the following query to your
Solr instance:
http://localhost:8983/solr/select?defType=dismax&pf=title^100&q=20
12+report&qf=title&q.op=AND

You should get the following response:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="pf">title^100</str>
 <str name="q">2012 report</str>
 <str name="qf">title</str>
 <str name="q.op">AND</str>
 <str name="defType">dismax</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="title">Annual 2012 report last draft</str>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="title">2012 draft report</str>
 </doc>
 </result>
 </response>

3.	 To visualize the results better, I decided to include the results returned by Solr for the
same query but without adding the pf parameter, and received the following results:
<?xml version="1.0" encoding="UTF-8"?>
 <response>

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

116

 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="qf">title</str>
 <str name=" defType">dismax</str>
 <str name="q.op">AND</str>
 <str name="q">2012 report</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">3</str>
 <str name="title">2012 draft report</str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Annual 2012 report last draft</str>
 </doc>
 </result>
 </response>

As you can see we fulfilled our requirement.

How it works...
Some of the parameters that are present in the example query may be new to you. The first
parameter is defType that tells Solr which query parser we will be using. In this example we
will be using the DisMax query parser (if you are not familiar with the DisMax query parser
please have a look at the following address http://wiki.apache.org/solr/DisMax).
One of the features of this query parser is the ability to tell what field should be used to search
for phrases, and we do that by adding the pf parameter. The pf parameter takes a list of
fields with the boost that corresponds to them, for example, pf=title^100 which means
that the phrase found in the title field will be boosted with a value of 100. The q parameter is
the standard query parameter that you are familiar with. This time we passed the words we
are searching for and the logical operator AND. This means that we are looking for documents
which contain the words 2012 and report. You should remember that you can't pass queries
such as fieldname:value to the q parameter and use the DisMax query parser. The fields
you are searching against should be specified using the qf parameter. In our case we told Solr
that we will be searching against the title field. We also included the q.op=AND parameter
because we want AND to be our logical operator for the query.

The results show us that we found two documents. The one that matches the exact query is
returned first and that is what we intended to achieve.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

117

There's more...
You can of course boost phrases with standard query parsers, but that's not as elegant as the
DisMax query parser method. To achieve similar results, you should run the following query to
your Solr instance:

http://localhost:8983/solr/select?q=title:(2012+AND+report)+OR+title:
"2012+report"^100

The above query tells Solr to search for the words 2010 and report in a title field, and
search for a 2012 report phrase and, if found, to boost that phrase with the value of 100.

Positioning some documents over others on
a query

Imagine a situation when your client tells you that he/she wants to promote some of his/her
products by placing them at the top of the search result list. Additionally, the client would like
the product list to be flexible, that is, he/she would like to be able to define the list for some
queries and not for others. Many thoughts come into your mind such as boosting, index time
boosting, or maybe some special field to achieve that. But don't bother, Solr can help you with
a component that is known as solr.QueryElevationComponent.

How to do it...
The following recipe will help you to place document over others based on your priorities:

1.	 First of all let's modify the solrconfig.xml document. We need to add
the component definition. To do that add the following section to your
solrconfig.xml file:
<searchComponent name="elevator" class="solr.
QueryElevationComponent" >
 <str name="queryFieldType">string</str>
 <str name="config-file">elevate.xml</str>
</searchComponent>

2.	 Now let's add the proper request handler that will include the elevation component.
We will name it /promotion. Add this to your solrconfig.xml file:
<requestHandler name="/promotion" class="solr.SearchHandler">
 <lst name="defaults">

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

118

 <str name="echoParams">explicit</str>
 <int name="rows">10</int>
 <str name="df">name</str>
 </lst>
 <arr name="last-components">
 <str>elevator</str>
 </arr>
</requestHandler>

3.	 You may notice that the query elevation component contained information about
a mysterious elevate.xml file. Let's assume that we want the documents with
identifiers 3 and 1 to be in the first two places in the results list for the solr
query. For now you need to create that file in the configuration directory of your
Solr instance and paste the following content:
<?xml version="1.0" encoding="UTF-8" ?>
 <elevate>
 <query text="solr">
 <doc id="3" />
 <doc id="1" />
 </query>
 </elevate>

4.	 Now it's time for the schema.xml file. Our field definition part of the file should
contain the following code:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />

5.	 Now let's index the following data file:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr cookbook</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Solr master pieces</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Solr annual report</field>
 </doc>
</add>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

119

6.	 Now we can run Solr and test our configuration. To do that let's run the following query:
http://localhost:8983/solr/promotion?q=solr

The previous query should return the following result:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="q">solr</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">3</str>
 <str name="name">Solr annual report</str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Solr master pieces</str>
 </doc>
 </result>
 </response>

The query without using the elevation component returned the following result:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">solr</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>
 </doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

120

 <doc>
 <str name="id">2</str>
 <str name="name">Solr master pieces</str>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Solr annual report</str>
 </doc>
 </result>
 </response>

As you can see the component worked. Now let's see how it works.

How it works...
The first part of the configuration defines a new search component with a name under
which the component will be visible to other components and the search handler (the
name attribute). In our case the component name is elevator and it's based on the
solr.QueryElevationComponent class (the class attribute). The following that
we have are two additional attributes that define the elevation component's behavior:

ff queryFieldType: This attribute tells Solr what type of field should be used to parse
the query text that is given to the component (for example, if you want the component
to ignore the letter case, you should set this parameter to the field type that
lowercases its contents)

ff config-file: This specifies the configuration file which will be used by the component

The next part of the solrconfig.xml configuration procedure is the search handler
definition. It simply tells Solr to create a new search handler with the name of /promotion
(to be the value of the name attribute) and using the solr.SearchHandler class (the class
attribute). In addition to that, the handler definition also tells Solr to include the component
named elevator in this search handler. This means that this search handler will use our
defined component. For your information, you can use more than one search component in a
single search handler. We've also included some standard parameters to the handler, such as
df, which specifies the default search field.

What we see next is the actual configuration of the elevator component. You can see that
there is a query defined (the query XML tag) with an attribute text="solr". This defines
the behavior of the component when a user passes solr to the q parameter. Under this tag
you can see a list of the documents' unique identifiers that will be placed at the top of the
results list for the defined query. Each document is defined by a doc tag and an id attribute
(which have to be defined on the basis of solr.StrField) which holds the unique identifier.
You can have multiple query tags in a single configuration file which means that the elevation
component can be used for a variety of queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

121

The index configuration and example datafile are fairly simple. The index contains two fields
that are responsible for holding information about the document. In the example datafile,
we can see three documents present. As the explanation is not crucial, I'll skip discussing
it further.

The query you see in the example returns all the documents. The query is made to our new
handler with just a simple one word q parameter (the default search field is set to name in the
schema.xml file). Recall the elevate.xml file and the documents we defined for the query
we just passed to Solr. We told Solr that we want the document with id=3 in the first place of
the results list and we want the document with id=1 in the second place of the results list. As
you can see, the documents were positioned exactly as we wanted them so it seems that the
component did its job.

There's more...
There is one more thing I would like to say about the query elevation functionality in Solr.

Excluding documents with QueryElevationComponent
The elevate component can not only place documents on top of the results list, but it can also
exclude documents from the results list. To do that you should add the exclude="true"
attribute to the document definition in your elevate.xml file. This is what the example file
would look like:

<?xml version="1.0" encoding="UTF-8" ?>
 <elevate>
 <query text="solr">
 <doc id="3" />
 <doc id="1" exclude="true" />
 <doc id="2" exclude="true" />
 </query>
 </elevate>

See also
If you would like to know how to mark the documents that were positioned by the solr.
QueryElevationComponent class, please read the Modifying returned documents recipe
in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

122

Positioning documents with words closer to
each other first

Imagine an e-commerce book shop where the users have only one way to find books, that is,
by searching. Most of the users requested that the OR operator should be the default logical
operator, so that we can have many results for most of the popular queries. Once every few
days an angry user calls the call center and says that by typing "solr cookbook" the first few
pages are not relevant to the query he/she typed in, so in other words this is not what he/
she searched for. So that's the problem, now what can be done? The answer is to boost
documents with query words closer to each other. This recipe will show you how to do it.

How to do it...
For the purpose of this task I will be using the DisMax query parser.

1.	 Let's start with the following index structure (just add the following to your
schema.xml file to the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text" indexed="true" stored="true" />
<field name="author" type="string" indexed="true" stored="true"/>

2.	 Now, let's index the following data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solr perfect search cookbook</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Solr example cookbook</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Solr cookbook</field>
 </doc>
</add>

3.	 In addition to that we need to define a new request handler in the solrconfig.xml
file, which looks like the following code:
<requestHandler name="/closer" class="solr.
StandardRequestHandler">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

123

 <lst name="defaults">
 <str name="q">_query_:"{!dismax qf=$qfQuery mm=1 pf=$pfQuery
bq=$boostQuery v=$mainQuery}"</str>
 <str name="qfQuery">title</str>
 <str name="pfQuery">title^1000</str>
 <str name="boostQuery">_query_:"{!dismax qf=$boostQueryQf
mm=100% v=$mainQuery}"^100</str>
 <str name="boostQueryQf">title</str>
 <str name="df">title</str>
 </lst>
</requestHandler>

4.	 As I wrote earlier, we want to get the documents with the words typed by the user close
to each other first in the result list. Let's assume our user typed in the dreaded solr
cookbook query. To handle the query we use the new /closer request handler we
defined earlier and we send the query using the mainQuery parameter, not the q one
(I'll describe why this is so later). So the whole query looks as follows:
http://localhost:8983/solr/closer?mainQuery=solr+cookbook&fl=score,
id,title

The result list returned by Solr is the following:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3</int>
 </lst>
 <result name="response" numFound="3" start="0"
maxScore="0.93303263">
 <doc>
 <str name="id">3</str>
 <str name="title">Solr cookbook</str>
 <float name="score">0.93303263</float>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Solr perfect search cookbook</str>
 <float name="score">0.035882458</float>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="title">Solr example cookbook</str>
 <float name="score">0.035882458</float>

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

124

 </doc>
 </result>
 </response>

We received the documents in the way we wanted. Now let's look at how that happened.

How it works...
First of all we have the index structure. For the purpose of the example, I assumed that our
book description will consist of three fields and we will be searching with the use of the title
field which is based on the standard text field defined in the standard schema.xml
file provided with the Solr distribution.

As you can see in the provided data file example there are three books. The first book has
two other words between the words solr and cookbook. The second book has one word
between the given words, and the third book has the words next to each other. In a perfect
situation, we would like to have the third book from the example file as the first one in the
result list, the second book from the file in the second place, and the first book from the
example data file as the last in the results list.

Now let's take a look at our new request handler. We defined it to be available under a name
/closer (the name attribute of the requestHandler tag). We also said that it should be
based on the solr.StandardRequestHandler class (in the class attribute). Next, in
the defaults list we have a number of parameters defining the query behavior we want to
achieve. First of all we have the q parameter. This contains the query constructed with the
use of local params. The _query_:"…" part of the q parameter is a way of specifying the
new query. We tell Solr that we want to use DisMax query parser (the !dismax part) and we
want to pass the value of the qfQuery parameter as the qf DisMax parser parameter. We
also want the "minimum should match" parameter to be equal one (mm=1), we want a phrase
query to be used (the one which is defined in the pfQuery (pf=$pfQuery) parameter) and
we want the boost query to be used – the one that is defined in the boostQuery parameter
(bq=$boostQuery). Finally we specify that we will pass the actual user query not with the q
parameter, but instead with the mainQuery parameter (v=$mainQuery).

Next we have boostQuery – another query constructed using local parameters. As you can
see we use the DisMax query parser (the !dismax query part), and we specify the qf and
mm DisMax query parser parameters. The value of the qf parameter will be taken from the
boostQueryQf parameter and the value of the mm parameter is set to 100%, so we want the
boost query to return only the documents that have all the words specified by the user. The
v attribute is responsible for passing the actual query, which in our case will be stored in the
mainQuery (v=$mainQuery part) parameter. We also said that we want our boost query
to be boosted by 100 (the ^100 part of the query). The boostQueryQf parameter is used
by the boost query to specify which fields should be used for search, in the query used for
boosting. Finally, the df parameter specifies the default search field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

125

Now let's discuss what the query is actually doing. The first query tells Solr to return all the
documents with at least one of the words that the user entered (this is defined by setting the
mm parameter to 1). But we also say that we want to boost phrases; that's why we use a phrase
query on the title field. In addition to that we specified that we want to use our boost query,
which will increase the boost of all the documents that have all the words entered by the user
(mm=100%). Combining all those factors we will end up with results that have the top documents
occupied by those documents that have all the words entered by the user present in the title
field and where all those words are close to each other.

The query is simple. We specify that we want to get a calculated score in the results for
each document, we want the id field, and the title field. We also pass the mainQuery
parameter because we have the v attribute of both the q and boostQuery parameters set
to the $mainQuery parameter. This means that Solr will take the mainQuery parameter
value and pass it to the v parameter of those queries. Because we prepared our request
handler configuration and pasted it into solrconfig.xml, now at query time we only
need to pass a single parameter that passes the words specified by our users.

The last thing is the results list. As you can see the documents are sorted in the way we
wanted them to be. You should take a look at one thing – the score field. This field shows
how relevant the document is to the query we sent to Solr.

Sorting results by a distance from a point
Suppose we have a search application that is storing information about the companies.
Every company is described by a name and two floating point numbers that represent the
geographical location of the company. One day your boss comes to your room and says that
he/she wants the search results to be sorted by distance from the user's location. This recipe
will show you how to do it.

Getting ready
Before continuing please read the Storing geographical points in the index recipe from
Chapter 3, Analyzing Your Text Data.

How to do it...
1.	 Let's begin with the following index (add the following to your schema.xml file to the

fields section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

126

<field name="location" type="location" indexed="true"
stored="true" />
<dynamicField name="*_coordinate" type="tdouble" indexed="true"
stored="false" />

2.	 We also have the following type defined in the schema.xml file:
<fieldType name="location" class="solr.LatLonType"
subFieldSuffix="_coordinate"/>

I assumed that the user location will be provided from the application that is making
a query.

3.	 Now let's index our example data file, which looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Company 1</field>
 <field name="location">56.4,40.2</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Company 2</field>
 <field name="location">50.1,48.9</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Company 3</field>
 <field name="location">23.18,39.1</field>
 </doc>
</add>

4.	 So our user is standing at the North Pole and is using our search application. Now
let's assume that we want to get the companies sorted in such a way that the ones
that are nearer the user are at the top of the results list. The query to find such
companies could look like the following query:
http://localhost:8983/solr/select?q=company&sort=geodist(location,
0.0,0.0)+asc

The result of that query would look as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

127

 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">company</str>
 <str name="sort">geodist(location,0.0,0.0) asc</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">3</str>
 <str name="name">Company 3</str>
 <str name="location">23.18,39.1</str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Company 1</str>
 <str name="location">56.4,40.2</str>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Company 2</str>
 <str name="location">50.1,48.9</str>
 </doc>
 </result>
 </response>

If you would like to calculate the distance by hand, you would see that the results are
sorted as they should be.

How it works...
As you can see in the index structure and in the data, every company is described by the
following three fields:

ff id: This specifies the unique identifier

ff name: This specifies the company name

ff location: This specifies the latitude and longitude of the company location

I'll skip commenting on how the actual location of the company is stored. If you want to
read more about it, please refer to the Storing geographical points in the index recipe
from Chapter 3, Analyzing Your Text Data.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

128

We wanted to get the companies that match the given query and are sorted in the ascending
order from the North Pole. To do that we run a standard query with a non-standard sort.
The sort parameter consists of a function name, geodist, which calculates the distance
between points. In our example the function takes three parameters:

ff The first parameter specifies the field in the index that should be used to calculate
the distance

ff The second parameter is the latitude value of the point from which the distance will
be calculated

ff The third parameter is the longitude value of the point from which the distance will
be calculated

After the function there is the order of the sort which in our case is asc (ascending order).

See also
If you would like to learn how to return the calculated distance that we used for sorting please
refer to the Returning the value of a function in results recipe in this chapter.

Getting documents with only a partial match
Imagine a situation where you have an e-commerce library and you want to make a search
algorithm that tries to bring the best search results to your customers. But you noticed that
many of your customers tend to make queries with too many words, which result in an empty
results list. So you decided to make a query that will require the maximum of two of the
words that the user entered to be matched. This recipe will show you how to do it.

Getting ready
This method can only be used with the DisMax query parser. The standard query parser doesn't
support the mm parameter.

How to do it...
1.	 Let's begin with creating our index that has the following structure (add this to your

schema.xml file to the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text" indexed="true" stored="true" />

As you can see our books are described by two fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

129

2.	 Now let's look at the example data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solrcook book revised</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Some book that was revised</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Another revised book</field>
 </doc>
</add>

3.	 The third step is to made a query that will satisfy the requirements. Such a query
could look like the following:
http://localhost:8983/solr/select?q=book+revised+another+
different+word+that+doesnt+count&defType=dismax&mm=2&q.op=AND

The preceding query will return the following results:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q.op">AND</str>
 <str name="mm">2</str>
 <str name="q">book revised another different word that doesnt
count</str>
 <str name="defType">dismax</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">3</str>
 <str name="title">Another revised book</str>
 </doc>
 <doc>
 <str name="id">2</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

130

 <str name="title">Some book that was revised</str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Solrcook book revised</str>
 </doc>
 </result>
 </response>

As you can see, even though the query was made up of too many words, the result list contains
all the documents from the example file. Now let's see how that happened.

How it works...
The index structure and the data are fairly simple. Every book is described by two fields:
a unique identifier and a title.

The query is the thing that we are interested in. We have passed about eight words to Solr
(the q parameter), we defined that we want to use the DisMax query parser (the defType
parameter), and we sent the mysterious mm parameter set to the value of 2. Yes, you are right,
the mm parameter, also called minimum should match, tells the DisMax query parser how
many of the words passed into the query must be matched with the document, to ascertain
that the document is a match. In our case we told the DisMax query parser that there should
be two or more words matched to identify the document as a match. We've also included
q.op=AND, so that the default logical operator for the query would be set to AND.

You should also note one thing – the document that has three words matched is at the top
of the list. The relevance algorithm is still there, which means that the documents with more
words that matched the query will be higher in the result list than those that have fewer
words that matched the query. The documentation about the mm parameter can be found at
http://wiki.apache.org/solr/DisMaxQParserPlugin.

Affecting scoring with functions
There are many situations where you would want to have an influence on how the score of the
documents is calculated. For example, you would perhaps like to boost the documents on the
basis of the purchases of it. Like in an e-commerce boost store, you would like to show relevant
results, but you would like to influence them by adding yet another factor to their score. Is it
possible? Yes, and this recipe will show you how to do it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

131

How to do it...
1.	 Let's start with the following index structure (just add the following to the field section

in your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text" indexed="true" stored="true" />
<field name="sold" type="int" indexed="true" stored="true" />

2.	 The example data looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solrcook book revised</field>
 <field name="sold">5</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Some book revised</field>
 <field name="sold">200</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Another revised book</field>
 <field name="sold">60</field>
 </doc>
</add>

3.	 So we want to boost our documents on the basis of a sold field while retaining the
relevance sorting. Our user typed revised into the search box, so the query would
look like the following:
http://localhost:8983/solr/select?defType=dismax&qf=title&q=revise
d&fl=*,score

And the results would be as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="qf">title</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

132

 <str name="fl">*,score</str>
 <str name="q">revised</str>
 <str name="defType">dismax</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0"
maxScore="0.35615897">
 <doc>
 <str name="id">1</str>
 <str name="title">Solrcook book revised</str>
 <int name="sold">5</int>
 <float name="score">0.35615897</float>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="title">Some book revised</str>
 <int name="sold">200</int>
 <float name="score">0.35615897</float>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="title">Another revised book</str>
 <int name="sold">60</int>
 <float name="score">0.35615897</float>
 </doc>
 </result>
 </response>

4.	 Now let's add the sold factor by adding the following to the query:
bf=product(sold)

So our modified query would look like this:
http://localhost:8983/solr/select?defType=dismax&qf=title&q=revise
d&fl=*,score&bf=product(sold)

And the results for the preceding query are as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">36</int>
 <lst name="params">
 <str name="fl">*,score</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

133

 <str name="q">revised</str>
 <str name="qf">title</str>
 <str name="bf">product(sold)</str>
 <str name="defType">dismax</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0"
maxScore="163.1048">
 <doc>
 <str name="id">2</str>
 <str name="title">Some book revised</str>
 <int name="sold">200</int>
 <float name="score">163.1048</float>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="title">Another revised book</str>
 <int name="sold">60</int>
 <float name="score">49.07608</float>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Solrcook book revised</str>
 <int name="sold">5</int>
 <float name="score">4.279089</float>
 </doc>
 </result>
 </response>

As you can see, adding the parameter changed the whole results list. Now let's see why
that happened.

How it works...
The schema.xml file is simple. It contains the following three fields:

ff id: This field is responsible for holding the unique identifier of the book

ff title: This specifies the book title

ff sold: This specifies the number of pieces that have been sold during the last month

In the data we have three books. Each of the books has the same number of words in the title.
That's why when typing the first query all documents got the same score. As you can see,
the first book is the one with the fewest pieces sold and that's not what we want to achieve.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

134

For the same reason we added the bf parameter. It tells Solr what function to use to affect
the scoring computation (in this case the result of the function will be added to the score of
the document). In our case it is the product function that returns the product of the values
we provide as its arguments; in our case the one and only argument of the function will be
the value of the book's sold field.

The result list of the modified query clearly shows how the scoring was affected by the function.
In the first place of the results list we have the book that was most popular during the last week.
The next book is the one which was less popular than the first book, but more popular than the
last book. The last book in the results is the least popular book.

See also
If you would like to know more about the functions available in Solr, please go to the Solr wiki
page at the following address: http://wiki.apache.org/solr/FunctionQuery.

Nesting queries
Imagine a situation where you need a query nested inside another query. Let's imagine that
you want to run a query using the standard request handler but you need to embed a query
that is parsed by the DisMax query parser inside it. This is possible with Solr 4.0 and this
recipe will show you how to do it.

How to do it...
1.	 Let's start with a simple index that has the following structure (just add the following

to the field section in your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text" indexed="true" stored="true" />

2.	 Now let's look at the example data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Revised solrcook book</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Some book revised</field>
 </doc>
 <doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

135

 <field name="id">3</field>
 <field name="title">Another revised little book</field>
 </doc>
</add>

3.	 Imagine you are using the standard query parser to support the Lucene query syntax,
but you would like to boost phrases using the DisMax query parser. At first it seems
that it is impossible, but let's assume that we want to find books that have the words
book and revised in their title field, and we want to boost the book revised
phrase by 10. Let's send a query like so:
http://localhost:8983/solr/select?q=book+revised+_query_:"{!dismax
qf=title pf=title^10 v=$qq}"&qq=book+revised&q.op=AND

The results of the preceding query should look like the following:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3</int>
 <lst name="params">
 <str name="q.op">AND</str>
 <str name="qq">book revised</str>
 <str name="q">book revised _query_:"{!dismax qf=title
pf=title^10 v=$qq}"</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">2</str>
 <str name="title">Some book revised</str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Revised solrcook book</str>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="title">Another revised little book</str>
 </doc>
 </result>
 </response>

As you can see, the results list was sorted exactly the way we wanted. Now let's see how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

136

How it works...
As you can see our index is very simple. It consists of two fields – one holding the unique
identifier (the id field) and another one holding the title of the book (the title field).

Let's look at the query. The q parameter is built from two parts. The first one, book+revised,
is just a usual query composed from two terms. The second part of the query starts with a
strange looking expression, that is, _query_. This expression tells Solr that another query
should be made that will affect the results list. Notice that the expression is surrounded
with " characters. Then we will see the expression tells Solr to use the DisMax query parser
(the !dismax part) and the parameters that will be passed to the parser (qf and pf). The
v parameter is used to pass the value of the q parameter. The value passed to the DisMax
query parser in our case will be book+revised. This is called parameter dereferencing.
By using the $qq expression, we tell Solr to use the value of the qq parameter. Of course,
we could pass the value to the v parameter, but I wanted to show you how to use the
dereferencing mechanism. The qq parameter is set to book+revised and it is used by Solr
as a parameter for the query that was passed to the DisMax query parser. The last parameter,
q.op=AND tells Solr which logical operator should be used as the default one.

The results show that we achieved exactly what we wanted.

Modifying returned documents
Let's say we are using the elevate component that Solr provides to promote some books
when necessary. But as you may already know, the standard Solr response doesn't include
the information about document being elevated or not. What we would like to achieve is to
get that information somehow from Solr. Actually we would like it to be as simple as running
a Solr query and getting the results back. This recipe will show you how to use document
transformers with the elevation component.

How to do it...
1.	 First of all, let's assume we have the following index structure defined in the fields

section of our schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text" indexed="true" stored="true"/>

2.	 We also need to have the elevation component defined along with the search
component (place the following entries in your solrconfig.xml file):
<requestHandler name="/select" class="solr.SearchHandler">
 <lst name="defaults">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

137

 <str name="echoParams">explicit</str>
 <int name="rows">10</int>
 <str name="df">name</str>
 </lst>
 <arr name="last-components">
 <str>elevator</str>
 </arr>
</requestHandler>

<searchComponent name="elevator" class="solr.
QueryElevationComponent">
 <str name="queryFieldType">string</str>
 <str name="config-file">elevate.xml</str>
</searchComponent>

3.	 The contents of the elevate.xml file located in the conf directory look like the
following code:
<elevate>
 <query text="book">
 <doc id="3" />
 </query>
</elevate>

4.	 Our example data that we indexed looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Book 1</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Book 2</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Promoted document</field>
 </doc>
</add>

5.	 Now let's query Solr with the following query:
http://localhost:8983/solr/select?q=book&df=name&fl=*,[elevated]

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

138

And the response we get from Solr is as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="q">book</str>
 <str name="df">name</str>
 <str name="fl">*,[elevated]</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">3</str>
 <str name="name">Promoted document</str>
 <bool name="[elevated]">true</bool>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Book 1</str>
 <bool name="[elevated]">false</bool>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Book 2</str>
 <bool name="[elevated]">false</bool>
 </doc>
 </result>
 </response>

As you can see each document does not only have its name and identifier, but also the
information about whether it was elevated or not.

How it works...
Our index structure consists of two fields, the id field which is our unique key and the name
field used for holding the name of the document. Please remember that in order to use the
elevation component you have to have a unique key defined in your schema.xml file, and this
field has to be based on the string type.

The /select request handler configuration is quite standard, although we've added the
last-components sections that define what component should be used during a query.
We defined that we want to use the component named elevator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

139

The next thing we did is the elevator search component definition. It is based on the solr.
QueryElevationComponent class (the class attribute) and we set its name to elevator
(the attribute name). In addition to that, we specified two attributes needed by the query
elevation component:

ff queryFieldType: This specifies the name of the type that will be used to analyze
the incoming text. We specified the string type because we want only exact
matches to include elevated documents.

ff config-file: This specifies the name of the configuration file that stores the
elevation definitions.

The elevate.xml file we use for storing the query elevation component is simple. The root tag
is named elevate and can have multiple query tags inside it. Each query tag is responsible
for elevating documents for a query defined with the text attribute. Inside the query tag we
can have multiple doc tags with an id attribute, which should have a value of the identifier of
the document to which we want add to results or modify positions. In our case, we want the
document with an identifier value of 3 to be placed in the first position when users enter the
book query.

The query we sent was simple; we asked for documents that have book in the default field
(the df parameter) which is name in our case. In addition to that, we want all stored fields to
be returned (the * part of the fl parameter) and we also want to activate one of the document
transformers, which is responsible for marking the documents that were elevated by the query
elevation component, by adding the [elevated] part of the fl parameter. This transformer
adds the <bool name="[elevated]">true</bool> field if the document was elevated,
and <bool name="[elevated]">false</bool> if the document wasn't elevated.

Using parent-child relationships
When using Solr you are probably used to having a flat structure of documents without any
relationships. However, there are situations where decomposing relationships is a cost we
can't take. Because of that Solr 4.0 comes with a join functionality that allows us to use some
basic relationships. For example, imagine that our index consists of books and workbooks and
we would like to use that relationship. This recipe will show you how to do it.

How to do it...
1.	 First of all, let's assume that we have the following index structure (just place the

following in the fields section of your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text" indexed="true" stored="true"
multiValued="false"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

140

<field name="type" type="string" indexed="true" stored="true"/>
<field name="book" type="string" indexed="true" stored="true"/>

2.	 Now let's look at our test data that we are going to index:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Book 1</field>
 <field name="type">book</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Book 2</field>
 <field name="type">book</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Workbook A</field>
 <field name="type">workbook</field>
 <field name="book">1</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Workbook B</field>
 <field name="type">workbook</field>
 <field name="book">2</field>
 </doc>
</add>

3.	 Now, let's assume we want to get all the books from Solr that have workbooks
for them. Also we want to narrow the books we got to only those that have the
character 2 in their names. In order to do that, we run the following query:
http://localhost:8983/solr/select/?q={!join from=book to=id}
type:workbook&fq=name:2

The Solr response for the preceding query is as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

141

 <lst name="params">
 <str name="fq">name:2</str>
 <str name="q">{!join from=book to=id}type:workbook</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Book 2</str>
 <str name="type">book</str>
 </doc>
 </result>
 </response>

As you can see, the returned document was exactly the one we expected.

How it works...
Although the example index structure is simple I would like to comment on it. The id field is
responsible for holding the unique identifier of the document, the name field is the document
name, and the type field holds the document's types. The book field is optional and specifies
the identifier of the parent document. So you can see that in our example data, we have two
parent documents (those with an id field value of 1 and 2) and two child documents (those
with an id field value of 3 and 4).

Let's pause for a bit now before looking at the query, and look at our example data. If we only
query for workbooks, we would get documents with identifier values of 3 and 4. The parent
for the document with the id field equal to 3 is 1, and the parent for the document with the
id field equal to 4 is 2. If we filter 1 and 2 with the filter fq=name:2, we should only get the
document with the id field value equal to 2 as the result. So looking at the query result it
works as intended, but how does the query actually work?

I'll begin the description from the join part, that is, q={!join from=book to=id}
type:workbook. As you can see we used local params to choose the different type of
query parser – the join query parser (the !join part of the query). We specified that child
documents should use the book field (the from parameter) and join it with the id field (the to
parameter). The type:workbook part specifies the query we run, that is, we want only those
documents that have the workbook value in the type field. The fq parameter, which narrows
the result set to only those documents that have the value 2 in the name field, is applied after
the join is executed, so we only apply it to the parent documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

142

Ignoring typos in terms of performance
Sometimes there are situations where you would like to have some kind of functionality that
would allow you to give your user the search results even though he/she made a typo or even
multiple typos. In Solr, there are multiple ways to undo that: using a spellchecker component
to try and correct the user's mistake, using the fuzzy query, or for example, using the ngram
approach. This recipe will concentrate on the third approach and show you how to use ngrams
to handle user typos.

How to do it...
For the purpose of the recipe, let's assume that our index is built up of four fields:
identifier, name, description, and the description_ngram field which
will be processed with the ngram filter.

1.	 So let's start with the fields definition of our index which should look like the following
code (place this in your schema.xml file in the fields section):
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text" indexed="true" stored="true"/>
<field name="description" type="text" indexed="true" stored="true"
/>
<field name="description_ngram" type="text_ngram" indexed="true"
stored="false" />

2.	 As we want to use the ngram approach, we will include the following filter in our
text_ngram field type definition:
<filter class="solr.NGramFilterFactory" minGramSize="2"
maxGramSize="2" />

The filter will be responsible for dividing the indexed data and queries into two
bi-grams. To better illustrate what I mean, take a look at the following screenshot,
which shows how the filter worked for the word "multiple":

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

143

So the whole text_ngram type definition will look like the following code:
<fieldType name="text_ngram" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.NGramFilterFactory" minGramSize="2"
maxGramSize="2" />
 </analyzer>
</fieldType>

3.	 We also need to add the copy field definition to our schema.xml file, to automatically
copy the value of the description field to the description_ngram field. The copy
field definition looks as follows:
<copyField source="description" dest="description_ngram" />

4.	 Now we can index our data. For the purpose of the recipe I used the following
data sample:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook 4.0</field>
 <field name="description">Solr Cookbook 4.0 contains multiple
 recipes helping you with your every day work with Solr :)</field>
 </doc>
</add>

5.	 After indexing it, I decided to test if my query can handle a single typo in each of the
words provided to the query, so I've sent the following query to Solr, where the words
I was really interested in were "contains" and "multiple":
q=description:(kontains+multyple) description_
ngram:(kontains+multyple)&q.op=OR

The result of the query was as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="indent">true</str>
 <str name="q">description:(kontains multyple) description_
ngram:(kontains multyple)</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

144

 <str name="q.op">OR</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr Cookbook 4.0</str>
 <str name="description">Solr Cookbook 4.0 contains multiple
 recipes helping you with your every day work with Solr :)</
 str></doc>
 </result>
 </response>

As you can see the document we were interested in was found. So let's see how that worked.

How it works...
As you can see from the index structure, we have two fields, namely name and description,
which we defined to use the text_ngram field because we want these fields to support the
returning of the search results even when the user enters a typo of some sort. To allow this
we use the solr.NGramFilterFactory filter with two attributes defined, namely, the
minGramSize which sets the minimum size of the produced ngram, and the maxGramSize
which sets the maximum size of the produced ngram. With both of these attributes set to 2,
we configured the solr.NGramFilterFactory filter to produce tokens called 2-grams, that
are built of two characters. The third attribute of the filter tag is the class attribute that
specifies
the filter factory class we want to use.

Let's concentrate on the provided screenshot (refer to step 2 in the How to do it... section) to
discuss how the solr.NGramFilterFactory filter works in our case. As I wrote earlier, we
want the ngram filter to produce grams built up of two characters. You can see how the filter
we've chosen works. From the word multiple it created the following bi-grams (n-grams built
from 2 characters):

mu ul lt ti ip pl le

So, the idea of the algorithm is quite simple – divide the word, so that we take the first
character and the character after it, and we make a bi-gram from it. Then we take the next
character and the character after it and create the second bi-gram and so on until we can't
make any more bi-grams.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

145

Now if you look at the query there are two words we are looking for and both of them contain
a typo. The kontains word should be contain without a typo and the multyple should be
multiple without a typo. Our query also specifies that the logical query operator we want to
use is the OR operator. We use it because we want to match all documents with even a single
match to any bi-gram. If we turn the kontains and multyple tokens into bi-grams, we would
get the following (I'll use the pipe (|) character to separate the words from each other):

ko on nt ta ai in ns | mu ul lt ty yp pl le

If we turn the contains multiple tokens into bi-grams we would get the following:

co on nt ta ai in ns | mu ul lt ti ip pl le

If you compare those bi-grams you would see that only three of those differ between the proper
words and the ones with typos. The rest of them are the same. Because of that our query
finds the document we indexed. You may wonder why we queried both the description and
description_ngram fields. We did that because we don't know if the client's query is the
one with typos or without. If it is without, we want the documents with better matches to be
higher up on the results lists, than the ones that are not perfectly matched.

Of course all of that doesn't come without any downsides. One of the major downsides of this
approach is the growth of the index size because of the number of tokens produced by the
ngram filter. The second downside is the number of results produced with such an approach;
there will be many more results than you are used to and that's why we did a query to both the
description and description_ngram fields. We wanted to increase the score value of
the perfectly matched documents (you can also boost the description field higher during a
query). You can also try having the same approach work with the edismax query parser and
the "minimum should match" (mm) parameter, but this is beyond the scope of this recipe.

Detecting and omitting duplicate documents
Imagine your data consists of duplicates because they come from different sources. For
example, you have books that come from different suppliers, but you are only interested in a
single book with the same name. Of course you could use the field collapsing feature during the
query, but that affects query performance and we would like to avoid that. This recipe will show
you how to use the Solr deduplication functionality.

How to do it...
1.	 We start with the simple index structure. This should be placed in the fields section

of your schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

146

<field name="name" type="text" indexed="true" stored="true"
multiValued="false"/>
<field name="type" type="string" indexed="true" stored="true"
multiValued="false"/>

2.	 For the purpose of the recipe, we assume that we have the following data stored in
the data.xml file:
<add>
 <doc>
 <field name="name">This is a book we are indexing and we think
it will be a dupe because it's almost the same as the second document
we are going to index</field>
 <field name="type">book</field>
 </doc>
 <doc>
 <field name="name">This is the book we are indexing and we think
it will be a dupe because it's almost the same as the second
document we are going to index</field>
 <field name="type">book</field>
 </doc>
</add>

As you can see, the file contains two documents and they only differ by a single word;
the first document contains is the is a book phrase, while the second contains the
is the book phrase. In my opinion the second document is a dupe of the first one.

3.	 In order to have those two documents detected and overwritten, we need to create
a new update request processor chain called dedupe and configure org.apache.
solr.update.processor.SignatureUpdateProcessorFactory as the first
update processor. So the appropriate section of our solrconfig.xml file should
look like the following code:
<updateRequestProcessorChain name="dedupe">
 <processor class="org.apache.solr.update.processor.
SignatureUpdateProcessorFactory">
 <bool name="enabled">true</bool>
 <bool name="overwriteDupes">true</bool>
 <str name="signatureField">id</str>
 <str name="fields">name</str>
 <str name="signatureClass">org.apache.solr.update.processor.
TextProfileSignature</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

147

4.	 Now let's index our data by running the following command:
curl 'http://localhost:8983/solr/update?update.
chain=dedupe&commit=true' --data-binary @data.xml -H 'Content-
type:application/xml'

5.	 If everything went well, we should only see the second document as the first one
should be overwritten. So we should check that by running the following query:
http://localhost:8983/solr/select?q=*:*

The response to it was the following:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="name">This is the book we are indexing and we think it
 will be a dupe because it's almost the same as the second
 document we are going to index</str>
 <str name="type">book</str>
 <str name="id">a095014df10f76513387af0450768ffb</str>
 </doc>
 </result>
 </response>

As you can see we got only a single document, and if you look again at the example data,
you would notice that it is the second document we sent, so the first one was overwritten.

How it works...
Our index structure is simple and consists of three fields – the id field which holds the unique
identifier, the name field which is a name of the book, and the type field which holds the type
of the book.

The example data you see doesn't contain the id field, which isn't a mistake, it was prepared
this way on purpose. We want our deduping to use the id field to generate a unique identifier
for us and use it to overwrite duplicate documents. Also, you can see that the two sample
documents are almost the same, so they should be marked as dupes and we should only
see one of them in the index, probably the second one.

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

148

Next we define a new update request processor chain in the solrconfig.xml file
with the name dedupe (the name property). The first processor we need to add in order
to have the deduping functionality is org.apache.solr.update.processor.
SignatureUpdateProcessorFactory. We do so by setting the class attribute of the
processor tag to the mentioned class. The next few properties configure the org.apache.
solr.update.processor.SignatureUpdateProcessorFactory behavior. By setting
the enabled property to true, we turn on the deduping mechanism. overwriteDupes set to
true tells Solr that we want the duplicate documents to be overwritten. The signatureField
field configures the name of the field where the generated signature will be stored, which in our
case is the id field. This is crucial, because Solr will use that information to identify duplicate
documents. The fields field contains information of which fields (a list separated by the
comma character) should be used to identify the duplication. We decided to use the name
field. Finally, the signatureClass class is the class implementing the signature calculation.
We've chosen org.apache.solr.update.processor.TextProfileSignature because
it works best on longer text and we expect that. You can also choose org.apache.solr.
update.processor.MD5Signature and org.apache.solr.update.processor.
Lookup3Signature. The last two processors, solr.LogUpdateProcessorFactory and
solr.RunUpdateProcessorFactory, write information about the update to the log file and
run the update.

As you can see in the response for our "match all documents" query, only the second document
is present. This is because when the index was empty the first document was indexed. Then, the
second document came and it was identified as a dupe and thus it overwrote the first one.

Using field aliases
Imagine your products have multiple prices, and depending on your client's location you search
one of the defined fields. So you have a field for price in US dollars, in Euros, and so on. But what
you would like to do is return the field you are using for displaying the price of the document as a
"price" no matter what field you use. This recipe will show you how to do it.

How to do it...
1.	 Let's begin with the following index structure (put all the entries in the fields

section of your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text" indexed="true" stored="true"/>
<field name="price_usd" type="double" indexed="true" stored="true"
/>
<field name="price_eur" type="double" indexed="true" stored="true"
/>
<field name="price_pln" type="double" indexed="true" stored="true"
/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

149

2.	 We will also use the following test data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook 4.0</field>
 <field name="price_usd">40.00</field>
 <field name="price_pln">120.00</field>
 <field name="price_eur">30.00</field>
 </doc>
</add>

3.	 Let's assume that we have a client from the United States of America and he/she
searches for the word solr and for products with the price in US dollars ranging from
20 to 50. The query would look like the following:
q=name:solr&fq=price_usd:[20+TO+50]&fl=id,name,price_usd

And the results of the preceding query would be as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="fq">price_usd:[20 TO 50]</str>
 <str name="fl">id,name,price_usd</str>
 <str name="q">name:solr</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr Cookbook 4.0</str>
 <double name="price_usd">40.0</double>
 </doc>
 </result>
 </response>

4.	 As you can see, we have our sample document returned but we've got the price_
usd value returned as well. We would like it to be named price. So let's modify
our fl parameter value, and instead of specifying id,name,price_usd we pass
id,name,price:price_usd. So the whole query would look as follows:

q=name:solr&fq=price_usd:[20+TO+50]&fl=id,name,price:price_usd

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

150

And the returned results would be as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="fq">price_usd:[20 TO 50]</str>
 <str name="fl">id,name,price:price_usd</str>
 <str name="q">name:solr</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr Cookbook 4.0</str>
 <double name="price">40.0</double>
 </doc>
 </result>
 </response>

As you can see in the result document we got a field called price instead of price_usd
field. Now, let's see how that works.

How it works...
The index structure is pretty simple, it only contains the field responsible for holding the
identifier, name of the document, and three prices in different currencies. All the fields
are marked as stored because we want to return them (not all at the same time though)
at query time. The sample data is also simple so I decided to skip commenting on that.

The first query is simple. We are searching for the value solr in the name field and we
want only the documents with the value of the price_usd field to be between 20 and 50.
We also want to return (the fl parameter) the following fields as a document: id, name,
and price_usd.

The interesting things come with the second query. As you can see there is a different fl
parameter that you may be used to. The first part of the fl parameter is pretty obvious;
we want to return the id and name fields. The second part is new though; we specified
the following value: price:price_usd. This means that we want the price_usd field
to be returned as price. That is how field aliasing works; you add the value ALIAS_
NAME:FIELD_NAME to the fl parameter and in the results, instead of FIELD_NAME,
Solr will return ALIAS_NAME.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

151

Returning a value of a function in the results
Imagine you have a service where your users can search for different companies. Your users
can enter a simple keyword(s) and then return all the companies matching that keyword(s).
But a day comes when you give your users the ability to choose their location, and you would
like to show how far they are from each company returned in the results. This recipe will show
you how to do it.

Getting ready
Before reading further I advise you to read the Using field aliases recipe in the current
chapter and the Storing geographical points in the index recipe from Chapter 3, Analyzing
Your Text Data.

How to do it...
1.	 For the purpose of the recipe, let's assume that we have the following index structure

(put the following field's definition into your schema.xml file in the fields section):
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text" indexed="true" stored="true"/>
<field name="loc" type="location" indexed="true" stored="true"/>
<dynamicField name="*_coordinate" type="double" indexed="true"
stored="false" />

2.	 Next, we need to define the location field type. It should look like the following
code (put the following definition in to your schema.xml file in the types section):
<fieldType name="location" class="solr.LatLonType"
subFieldSuffix="_coordinate"/>

3.	 Let's also assume that we have the following data indexed:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Company 1</field>
 <field name="loc">56.4,40.2</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Company 2</field>
 <field name="loc">50.1,48.9</field>
 </doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Querying Solr

152

 <doc>
 <field name="id">3</field>
 <field name="name">Company 3</field>
 <field name="loc">23.18,39.1</field>
 </doc>
</add>

4.	 Now, in order to get all the documents with the word company in the name field
we would run the following query:
q=name:company&fl=*

5.	 We have the information that our client's location is 50.0, 28.0 and we would like to
show our client the distance from his/her location to each of the companies we return
in the results. In order to do that we add the following part to the fl parameter:
dist:geodist(loc,50.0,28.0)

So the whole query looks like the following:
q=name:company&fl=*,dist:geodist(loc,50.0,28.0)

And the response from Solr is as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">name:company</str>
 <str name="fl">*,dist:geodist(loc,50.0,28.0)</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Company 1</str>
 <str name="loc">56.4,40.2</str>
 <double name="dist">1077.4200268973314</double>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Company 2</str>
 <str name="loc">50.1,48.9</str>
 <double name="dist">1487.4260767512278</double>
 </doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

153

 <doc>
 <str name="id">3</str>
 <str name="name">Company 3</str>
 <str name="loc">23.18,39.1</str>
 <double name="dist">3134.746384852772</double>
 </doc>
 </result>
 </response>

As you can see, in addition to all the stored fields, Solr returned the additional field called
dist. Let's now see how that worked.

How it works...
The index structure is simple, it contains the identifier (the id field), name of the company
(the name field), and the geographical location of the company (the loc field). Description
of how geographical points should be stored were described in Chapter 3, Analyzing Your
Text Data, in the Storing geographical points in the index recipe, so please refer to that for
the explanation.

The initial query returning all the companies that have the word company in their name field
returns all the stored fields (the fl=* part of the query). The interesting part comes with the
dist:geodist(loc,50.0,28.0) part of the fl parameter. As you remember from the
Using field aliases recipe, we told Solr that we want to have a new field called dist returned
and we want it to be a value of the dist function query which takes three parameters: the field
in the index (in our case it is loc), the latitude, and the longitude, and returns the distance
between the point stored in the loc field, and the point described by the latitude and longitude.
The value is then returned as the dist field of each of the returned documents.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

5
Using the Faceting

Mechanism

In this chapter we will cover:

ff Getting the number of documents with the same field value

ff Getting the number of documents with the same value range

ff Getting the number of documents matching the query and the sub query

ff Removing filters from faceting results

ff Sorting faceting results in alphabetical order

ff Implementing the autosuggest feature using faceting

ff Getting the number of documents that don't have a value in the field

ff Having two different facet limits for two different fields in the same query

ff Using decision tree faceting

ff Calculating faceting for relevant document groups

Introduction
One of the advantages of Solr is the ability to group results on the basis of some fields'
contents. The Solr classification mechanism, called faceting, provides the functionalities
which can help us in several tasks that we need to do in everyday work, from getting the
number of documents with the same values in a field (for example, the companies from the
same city) using the ability of date and range faceting, to the autocomplete features based on
the faceting mechanism. This chapter will show you how to handle some of the common tasks
when using the faceting mechanism.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

156

Getting the number of documents with the
same field value

Imagine a situation where besides the search results, you have to return the number of
documents with the same field value. For example, imagine that you have an application
that allows the user to search for companies in Europe, and your client wants the number
of companies in the cities where the companies that were found by the query are located.
To do this, you could of course run several queries but Solr provides a mechanism called
faceting that can do that for you. This recipe will show you how to do it.

How to do it...
For getting the number of documents with the same field value, follow these steps:

1.	 To start, let's assume that we have the following index structure (just add this
to your schema.xml file in the field definition section; we will use the city field
to do the faceting):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="city" type="string" indexed="true" stored="true" />

2.	 The next step is to index the following example data:
<add>
<doc>
 <field name="id">1</field>
 <field name="name">Company 1</field>
 <field name="city">New York</field>
</doc>
<doc>
 <field name="id">2</field>
 <field name="name">Company 2</field>
 <field name="city">New Orleans</field>
</doc>
<doc>
 <field name="id">3</field>
 <field name="name">Company 3</field>
 <field name="city">New York</field>
</doc>
</add>

3.	 Let's suppose that our hypothetical user searches for the word company. The query
that will get us what we want should look like this:
http://localhost:8983/solr/select?q=name:company&facet=true&facet.
field=city

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

157

The result of the query should be like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="facet">true</str>
 <str name="facet.field">city</str>
 <str name="q">name:company</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="city">New York</str>
 <str name="id">1</str>
 <str name="name">Company 1</str>
 </doc>
 <doc>
 <str name="city">New Orleans</str>
 <str name="id">2</str>
 <str name="name">Company 2</str>
 </doc>
 <doc>
 <str name="city">New York</str>
 <str name="id">3</str>
 <str name="name">Company 3</str>
 </doc>
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="city">
 <int name="New York">2</int>
 <int name="New Orleans">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

As you can see, besides the normal results list, we got faceting results with the numbers that
we wanted. Now let's look at how that happened.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

158

How it works...
The index structure and the data are pretty simple and they make the example easier to
understand. The company is described by three fields. We are particularly interested in the
city field. This is the field that we want to use to get the number of companies that have
the same value in this field—which basically means that they are in the same city.

To do that, we run a query to Solr and inform the query parser that we want the documents
that have the word company in the title field. Additionally we say that we want to enable
the faceting mechanism, by using the facet=true parameter. The facet.field parameter
tells Solr which field to use to calculate faceting numbers. You can specify the facet.field
parameter multiple times to get faceting numbers for different fields in the same query.

As you can see in the results list, the results of all types of faceting are grouped in the list
with the name="facet_counts" attribute. The field based faceting is grouped under the
list with the name="facet_fields" attribute. Every field that you specified using the
facet.field parameter has its own list which has the attribute name, the same as the
value of the parameter in the query—in our case it is city. Then finally you can see the
results that we are interested in: the pairs of values (name attribute) and how many
documents have the value in the specified field.

There's more...
There are two more things I would like to share about field faceting:

ff How to show facets with counts greater than zero: The default behavior of Solr is to
show all the faceting results irrespective of the counts. If you want to show only the
facets with counts greater than zero than you should add the facet.mincount=1
parameter to the query (you can set this parameter to another value if you are
interested in any arbitrary value).

ff Lexicographical sorting of the faceting results: If you want to sort the faceting
results lexicographically, and not by the highest count (which is the default behavior),
then you need to add the facet.sort=index parameter.

Getting the number of documents with the
same value range

Imagine that you have an application where users can search the index to find a car for rent.
One of the requirements of the application is to show a navigation panel, where the user can
choose the price range for the cars that they are interested in. To do it in an efficient way, we
will use range faceting and this recipe will show you how to do it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

159

How to do it...
For getting the number of documents with the same value range, follow these steps:

1.	 Let's begin with the following index structure (just add this to your schema.xml
file in the field definition section; we will use the price field to do the faceting):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="price" type="float" indexed="true" stored="true" />

2.	 The example data that we will use is like this:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Super Mazda</field>
 <field name="price">50</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Mercedes Benz</field>
 <field name="price">210</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Bentley</field>
 <field name="price">290</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Super Honda</field>
 <field name="price">99.90</field>
 </doc>
</add>

3.	 Now, as you recall, our requirement was to show the navigation panel with
price ranges. To do that, we need to get that data from Solr. We also know
that the minimum price for car rent is 1 dollar and the maximum is 400
dollars. To get the price ranges from Solr, we send the following query:

http://localhost:8983/solr/select?q=*:*&rows=0&facet=true&facet.
range=price&facet.range.start=0&facet.range.end=400&facet.range.
gap=100

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

160

The query will produce the following result list:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3</int>
 <lst name="params">
 <str name="facet">true</str>
 <str name="q">*:*</str>
 <str name="facet.range.start">0</str>
 <str name="facet.range">price</str>
 <str name="facet.range.end">400</str>
 <str name="facet.range.gap">100</str>
 <str name="rows">0</str>
 </lst>
 </lst>
 <result name="response" numFound="4" start="0"/>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
 <lst name="facet_ranges">
 <lst name="price">
 <lst name="counts">
 <int name="0.0">2</int>
 <int name="100.0">0</int>
 <int name="200.0">2</int>
 <int name="300.0">0</int>
 </lst>
 <float name="gap">100.0</float>
 <float name="start">0.0</float>
 <float name="end">400.0</float>
 </lst>
 </lst>
 </lst>
</response>

So we got exactly what we wanted. Now let's see how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

161

How it works...
As you can see, the index structure is simple. There are three fields, one responsible for
the unique identifier, one responsible for the car name, and the last one responsible for
the price of rent.

The query is where all the magic is done. As we are not interested in the search results, we
ask for all documents in the index (q=*:* parameter) and we tell Solr not to return the search
results (rows=0 parameter). Then we tell Solr that we want the faceting mechanism to be
enabled for the query (facet=true parameter). We will not be using the standard faceting
mechanism, that is, the field based faceting. Instead we will use range faceting which is
optimized to work with ranges. So, we tell Solr which field will be used for range faceting by
adding the parameter facet.range with the price value. That means that the price field
will be used for the range faceting calculation. Then we specify the lower boundary from which
the range faceting calculation will begin. We do this by adding the facet.range.start
parameter; in our example we set it to 0. Next we have the facet.range.end parameter
which tells Solr when to stop the calculation of the range faceting. The last parameter
(facet.range.gap) informs Solr about the length of the periods that will be calculated.

Remember that when using the range faceting mechanism you must specify the
three parameters:

ff facet.range.start

ff facet.range.end

ff facet.range.gap

Otherwise, the range faceting mechanism won't work.

In the faceting results you can see the periods and the number of documents that were found
in each of them. The first period can be found under the <int name="0.0"> tag. This period
consists of prices from 0 to 100 (in mathematical notation it would be <0; 100>). It contains
two cars. The next period can be found under the <int name="100.0"> tag and consists of
prices from 100 to 200 (in mathematical notation it would be <100; 200>), and so on.

Getting the number of documents matching
the query and subquery

Imagine a situation where you have an application that has a search feature for cars. One of
the requirements is not only to show search results, but also to show the number of cars with
the price period chosen by the user. There is also another thing—those queries must be fast
because of the number of queries that will be run. Can Solr handle that? The answer is yes.
This recipe will show you how to do it.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

162

How to do it...
For getting the number of documents matching the query and subquery, follow these steps:

1.	 Let's start with creating an index with the following structure (just add this to
your schema.xml file in the field definition section; we will use the price field
to do the faceting):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="price" type="float" indexed="true" stored="true" />

2.	 Now let's index the following sample data:
<add>
<doc>
 <field name="id">1</field>
 <field name="name">Car 1</field>
 <field name="price">70</field>
</doc>
<doc>
 <field name="id">2</field>
 <field name="name">Car 2</field>
 <field name="price">101</field>
</doc>
<doc>
 <field name="id">3</field>
 <field name="name">Car 3</field>
 <field name="price">201</field>
</doc>
<doc>
 <field name="id">4</field>
 <field name="name">Car 4</field>
 <field name="price">99.90</field>
</doc>
</add>

Now, recall our requirement cars that match the query (let's suppose that our user
typed car), and show the counts in the chosen price periods. For the purpose of the
recipe let's assume that the user has chosen two periods of prices:

�� 10 to 80

�� 90 to 300

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

163

3.	 The query to achieve such a requirement should look like this:

http://localhost:8983/solr/select?q=name:car&facet=true&facet.
query=price:[10 TO 80]&facet.query=price:[90 TO 300]

The result list of the query should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="facet">true</str>
 <arr name="facet.query">
 <str>price:[10 TO 80]</str>
 <str>price:[90 TO 300]</str>
 </arr>
 <str name="q">name:car</str>
 </lst>
 </lst>
 <result name="response" numFound="4" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Car 1</str>
 <float name="price">70.0</float>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Car 2</str>
 <float name="price">101.0</float>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Car 3</str>
 <float name="price">201.0</float>
 </doc>
 <doc>
 <str name="id">4</str>
 <str name="name">Car 4</str>
 <float name="price">99.9</float>
 </doc>
 </result>

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

164

 <lst name="facet_counts">
 <lst name="facet_queries">
 <int name="price:[10 TO 80]">1</int>
 <int name="price:[90 TO 300]">3</int>
 </lst>
 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
 </lst>
</response>

How it works...
As you can see, the index structure is simple. There are three fields, one responsible for the
unique identifier, one responsible for the car name, and the last one responsible for the price.

Next we have the query. First you can see a standard query where we tell Solr that we want to
get all the documents that have the word car in the name field (the q=name:car parameter).
Next, we say that we want to use the faceting mechanism by adding the facet=true
parameter to the query. This time we will use the query faceting type. This means that we
can pass the query to the faceting mechanism and as a result we will get the number of
documents that match the given query. In our example case, we wanted two periods like this:

ff One from the price of 10 to 80

ff Another from the price of 90 to 300

This is achieved by adding the facet.query parameter with the appropriate value. The first
period is defined as a standard range query to the price field (price:[10 TO 80]). The
second query is very similar, just with different values. The value passed to the facet.query
parameter should be a Lucene query written using the default query syntax.

As you can see in the results, the query faceting results are grouped under the <lst
name="facet_queries"> XML tag with the names exactly as in the queries sent to Solr.
You can see that Solr correctly calculated the number of cars in each of the periods, which
means that this is a perfect solution for us when we can't use the range faceting mechanism.

Removing filters from faceting results
Let's assume for the purpose of this recipe that you have an application that can search for
companies within a city and state. But the requirements say that you should show not only
the search results but also the number of companies in each city and the number of
companies in each state (in the Solr way we say that you want to exclude the filter query
from the faceting results). Can Solr do that in an efficient way? Sure it can, and this recipe
will show you how to do it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

165

Getting ready
Before you start reading this recipe, please take a look at the Getting the number of
documents with the same field value recipe in this chapter.

How to do it...
1.	 We start with the following index structure (just add this to your schema.xml file in

the field definition section; we will use the city and state fields to do the faceting):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="city" type="string" indexed="true" stored="true" />
<field name="state" type="string" indexed="true" stored="true />

2.	 The second step would be to index the following example data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Company 1</field>
 <field name="city">New York</field>
 <field name="state">New York</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Company 2</field>
 <field name="city">New Orleans</field>
 <field name="state">Luiziana</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Company 3</field>
 <field name="city">New York</field>
 <field name="state">New York</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Company 4/field>
 <field name="city">New York</field>
 <field name="state">New York</field>
 </doc>
</add>

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

166

3.	 Let's suppose that our hypothetical user searched for the word company, and told
our application that he needs the companies matching the word in the state of New
York. In that case, the query that will fulfill our requirement should look like this:
http://localhost:8983/solr/select?q=name:company&facet=true
&fq={!tag=stateTag}state:"New York"&facet.field={!ex=stateTag}
city&facet.field={!ex=stateTag}state

The result for the query will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="facet">true</str>
 <arr name="facet.field">
 <str>{!ex=stateTag}city</str>
 <str>{!ex=stateTag}state</str>
 </arr>
 <str name="fq">{!tag=stateTag}state:"New York"</str>
 <str name="q">name:company</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Company 1</str>
 <str name="city">New York</str>
 <str name="state">New York</str>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Company 3</str>
 <str name="city">New York</str>
 <str name="state">New York</str>
 </doc>
 <doc>
 <str name="id">4</str>
 <str name="name">Company 4</str>
 <str name="city">New York</str>
 <str name="state">New York</str>
 </doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

167

 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="city">
 <int name="New York">3</int>
 <int name="New Orleans">1</int>
 </lst>
 <lst name="state">
 <int name="New York">3</int>
 <int name="Luiziana">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

Now let's see how it works.

How it works...
The index structure is pretty simple—it contains four fields that describe the company.
The search will be performed against the name field, while the filtering and the faceting
is done with the use of the state and city fields.

So let's get on with the query. As you can see, we have some typical elements there. First
the q parameter, which just tells Solr where and what to search for. Then the facet=true
parameter that enables the faceting mechanism. So far, so good. Following that, you have
a strange looking filter query (the fq parameter) with the value of fq={!tag=stateTag}
state:"New York". It tells Solr to only show those results that have New York in the
state field. By adding the {!tag=stateTag} part, we basically gave that filter query
a name (stateTag), which we will use further.

Now, look at the two facet.field parameters. Our requirement was to show the number
of companies in all states and in all cities. The only thing that was preventing us from getting
those numbers was the filter query we added to the query. So let's exclude it from the faceting
results. How to do it ? It's simple—just add {!ex=stateTag} to the beginning of each of the
facet.field parameters, like this: facet.field={!ex=stateTag}city. It tells Solr to
exclude the filter with the passed name.

As you can see in the results list, we got the correct numbers which means that the exclude
works as intended.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

168

Sorting faceting results in alphabetical
order

Imagine a situation where you have a website, where you present some kind of
advertisements, for example, house rental advertisements. One of the requirements is to
show a list of cities in which the offer, that matched the query typed by the user, are located.
So the first thing you think is to use the faceting mechanism – and that's a good idea. But
then, your boss tells you that he is not interested in the counts and you have to sort the
results in the alphabetical order. So, is Solr able to do it? Of course it is and this recipe will
show you how to do it.

Getting ready
Before you start reading this recipe, please take a look at the Getting the number of
documents with the same field value recipe in this chapter.

How to do it...
1.	 For the purpose of the recipe let's assume that we have the following index structure

(just add this to your schema.xml file to the field definition section; we will use the
city field to do the faceting):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="city" type="string" indexed="true" stored="true" />

2.	 This index structure is responsible for holding information about companies and their
location. Now, let's index the example data matching the presented index structure:
<add>
<doc>
 <field name="id">1</field>
 <field name="name">House 1</field>
 <field name="city">New York</field>
 </doc>
<doc>
 <field name="id">2</field>
 <field name="name">House 2</field>
 <field name="city">Washington</field>
</doc>
<doc>
 <field name="id">3</field>
 <field name="name">House 3</field>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

169

 <field name="city">Washington</field>
</doc>
<doc>
 <field name="id">4</field>
 <field name="name">House 4</field>
 <field name="city">San Francisco</field>
</doc>
</add>

3.	 Let's assume that our hypothetical user typed house in the search box. The query
to return the search results with the faceting results sorted alphabetically should
be like this:

http://localhost:8983/solr/select?q=name:house&facet=true&facet.
field=city&facet.sort=index

The results returned by Solr for the query should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="facet">true</str>
 <str name="facet.field">city</str>
 <str name="facet.sort">index</str>
 <str name="q">name:house</str>
 </lst>
 </lst>
 <result name="response" numFound="4" start="0">
 <doc>
 <str name="city">New York</str>
 <str name="id">1</str>
 <str name="name">House 1</str>
 </doc>
 <doc>
 <str name="city">Washington</str>
 <str name="id">2</str>
 <str name="name">House 2</str>
 </doc>
 <doc>
 <str name="city">Washington</str>
 <str name="id">3</str>
 <str name="name">House 3</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

170

 </doc>
 <doc>
 <str name="city">San Francisco</str>
 <str name="id">4</str>
 <str name="name">House 4</str>
 </doc>
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="city">
 <int name="New York">1</int>
 <int name="San Francisco">1</int>
 <int name="Washington">2</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

As you can see the faceting results returned by Solr are not sorted by counts but in
alphabetical order. Now let's see how it works.

How it works...
The index structure and the example data are only here to help us make a query so I'll skip
discussing them.

The query shown in the recipe differs from the standard faceting query by only one
parameter—facet.sort. It tells Solr how to sort the faceting results. The parameter
can be assigned one of two values:

ff count – which tells Solr to sort the faceting results placing the highest counts first

ff index – which tells Solr to sort the faceting results by index order, which means that
the results will be sorted lexicographically

For the purpose of the recipe we chose the second option and as you can see in the returned
results, we got what we wanted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

171

Implementing the autosuggest feature using
faceting

There are plenty of web-based applications that help users choose what they want to search
for. One of the features that helps users is the autocomplete (or autosuggest) feature, like
the one that most of the most used search engines have. Let's assume that we have an
e-commerce library and we want to help the user to choose a book title—we want to enable
autosuggest on the basis of the title. This recipe will show you how to do that.

Getting ready
Before you start reading this recipe, please take a look at the Getting the number of
documents with the same field value recipe in this chapter.

How to do it...
1.	 Let's begin with the assumption of having the following index structure (just add

this to your schema.xml file in the fields definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text" indexed="true" stored="true" />
<field name="title_autocomplete" type="lowercase" indexed="true"
stored="true">

2.	 We also want to add some field copying to do some operations automatically.
To do that we need to add the following line after the fields section in your
schema.xml file:
<copyField source="title" dest="title_autocomplete" />

3.	 The lowercase field type should look like this (just add this to your schema.xml
file to the type definitions):
<fieldType name="lowercase" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory" />
 </analyzer>
</fieldType>

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

172

4.	 Now, let's index a sample data file which could look like this:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Lucene or Solr ?</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">My Solr and the rest of the world</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Solr recipes</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="title">Solr cookbook</field>
 </doc>
</add>

5.	 Let's assume that our hypothetical user typed the letters so in the search box and
we want to give him the first 10 suggestions with the highest counts. We also want
to suggest the whole titles, not just single words. To do that, we should send the
following query to Solr:
http://localhost:8983/solr/select?q=*:*&rows=0&facet=true&facet.
field=title_autocomplete&facet.prefix=so

As a result for the query, Solr returned the following output:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">16</int>
 <lst name="params">
 <str name="facet">true</str>
 <str name="q">*:*</str>
 <str name="facet.prefix">so</str>
 <str name="facet.field">title_autocomplete</str>
 <str name="rows">0</str>
 </lst>
 </lst>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

173

 <result name="response" numFound="4" start="0"/>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="title_autocomplete">
 <int name="solr cookbook">1</int>
 <int name="solr recipes">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

As you can see, we got what we wanted in the faceting results. Now let's see how it works.

How it works...
You can see that our index structure defined in the schema.xml file is pretty simple.
Every book is described by two fields, id and title. The additional field will be used
to provide the autosuggest feature.

The copy field section is there to automatically copy the contents of the title field to
the title_autocomplete field.

The lowercase field type is a type we will use to provide the autocomplete feature; this is
the same for lowercase words typed by the users as well as uppercase words. If we want to
show different results for uppercased and lowercased letters then the string type will be
sufficient.

Now let's take a look at the query. As you can see we are searching the whole index (the
parameter q=*:*), but we are not interested in any search results (the rows=0 parameter).
We tell Solr that we want to use the faceting mechanism (facet=true parameter) and that
it will be field-based faceting on the basis of the title_autocomplete field (the facet.
field=title_autocomplete parameter). The last parameter, facet.prefix, can be
something new. Basically it tells Solr to return only those faceting results that begin with the
prefix specified as the value of this parameter, which in our case is the value of so. The use of
this parameter enables us to show the suggestions that the user is interested in, and we can
see in the results that we achieved what we wanted.

There's more...
There is one more thing I would like to say about autosuggestion functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

174

Suggesting words not whole phrases
If you want to suggest words instead of a whole phrase you don't have to change much
of the previous configuration. Just change the type of title_autocomplete to the type
based on solr.TextField (for example, the text_ws field type). You should remember,
though, not to use heavily analyzed text (like stemmed text) to be sure that your word won't
be modified too much.

Getting the number of documents that don't
have a value in the field

Let's imagine we have an e-commerce library where we put some of our books on a special
promotion, for example, we give them away for free. We want to share that knowledge with our
customers and say: Hey! You searched for Solr, we found this, but we also have X books that
are free! To do that, we index the books that are free without the price defined. But how do
you make a query to Solr to retrieve the data that we want? This recipe will show you how.

Getting ready
Before you start reading this recipe, please take a look at the Getting the number of
documents matching the query and the subquery recipe in this chapter.

How to do it...
1.	 Let's begin with the following index structure (just add this to your schema.xml

file in the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text" indexed="true" stored="true" />
<field name="price" type="float" indexed="true" stored="true">

2.	 We will also use the following sample data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Lucene or Solr ?</field>
 <field name="price">11</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">My Solr and the rest of the world</field>
 <field name="price">44</field>
 </doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

175

 <doc>
 <field name="id">3</field>
 <field name="title">Solr recipes</field>
 <field name="price">15</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="title">Solr cookbook</field>
 </doc>
</add>

As you can see, the first three documents have a value in the price field, while
the last one doesn't. So now, for the purpose of the example, let's assume that
our hypothetical user is trying to find books that have solr in their title field.

3.	 Besides the search results, we want to show the number of documents that don't
have a value in the price field. To do that, we send the following query to Solr:

http://localhost:8983/solr/select?q=title:solr&facet=true&facet.
query=!price:[* TO *]\

The query should result in the following output from Solr:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="facet">true</str>
 <str name="facet.query">!price:[* TO *]</str>
 <str name="q">title:solr</str>
 </lst>
 </lst>
 <result name="response" numFound="4" start="0">
 <doc>
 <str name="id">3</str>
 <float name="price">15.0</float>
 <str name="title">Solr recipes</str>
 </doc>
 <doc>
 <str name="id">4</str>
 <str name="title">Solr cookbook</str>
 </doc>
 <doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

176

 <str name="id">1</str>
 <float name="price">11.0</float>
 <str name="title">Lucene or Solr ?</str>
 </doc>
 <doc>
 <str name="id">2</str>
 <float name="price">44.0</float>
 <str name="title">My Solr and the rest of the world</str>
 </doc>
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries">
 <int name="!price:[* TO *]">1</int>
 </lst>
 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

As you can see we got the proper results. Now let's see how it works.

How it works...
You can see that our index structure defined in the schema.xml file is pretty simple. Every
book is described by three fields, id, title, and price. Their names speak for the type of
information they will hold.

The query is in most parts something you should be familiar with. First, we tell Solr that we
are searching for documents that have the word solr in the title field (the q=title:solr
parameter). Then we say that we want to have the faceting mechanism enabled by adding the
facet=true parameter. Then we add a facet query parameter that tells Solr to return the
number of documents that don't have a value in the price field. We do that by adding the
facet.query=!price:[* TO *] parameter. How does that work? You should be familiar
with how the facet.query parameter works, so I'll skip that part. The price:[* TO *]
expression tells Solr to count all the documents that have a value in the price field. By
adding the ! character before the fieldname, we tell Solr to negate the condition and in fact
we get the number of documents that don't have any value in the specified field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

177

Having two different facet limits for two
different fields in the same query

Imagine a situation where you have a database of cars in your application. Besides the
standard search results, you want to show two faceting by field results. The first of those
two faceting results, the number of cars in each category, should be shown without any
limits, while the second faceting, the one showing the cars by their manufacturer, should
be limited to a maximum of 10 results. Can we achieve it in one query? Yes, we can, and
this recipe will show you how to do it.

Getting ready
Before you start reading this recipe please take a look at the Getting the number of
documents with the same field value recipe in this chapter.

How to do it...
1.	 For the purpose of the recipe, let's assume that we have the following index structure

(just add this to your schema.xml file in the field definition section; we will use the
category and manufacturer fields to do the faceting):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
 <field name="name" type="text" indexed="true" stored="true" />
 <field name="category" type="string" indexed="true" stored="true"
/>
<field name="manufacturer" type="string" indexed="true"
stored="true" />

2.	 We will need some sample data. For example we can use a file that has the
following content:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Super Mazda car</field>
 <field name="category">sport</field>
 <field name="manufacturer">mazda</field>
 </doc>
 <doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

178

 <field name="id">2</field>
 <field name="name">Mercedes Benz car</field>
 <field name="category">limousine</field>
 <field name="manufacturer">mercedes</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Bentley car</field>
 <field name="category">limousine</field>
 <field name="manufacturer">bentley</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Super Honda car</field>
 <field name="category">sport</field>
 <field name="manufacturer">honda</field>
 </doc>
</add>

3.	 For the purpose of the example, let's assume that our hypothetical user is trying to
search the index for the word car. To do that we should send Solr the following query:
http://localhost:8983/solr/select?q=name:car&facet=true&facet.
field=category&facet.field=manufacturer&f.category.facet.limit=-
1&f.manufacturer.facet.limit=10

The query resulted in the following response from Solr:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="f.category.facet.limit">-1</str>
 <str name="facet">true</str>
 <str name="q">name:car</str>
 <arr name="facet.field">
 <str>category</str>
 <str>manufacturer</str>
 </arr>
 <str name="f.manufacturer.facet.limit">10</str>
 </lst>
 </lst>
 <result name="response" numFound="4" start="0">
 <doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

179

 <str name="id">3</str>
 <str name="name">Bentley car</str>
 <str name="category">limousine</str>
 <str name="manufacturer">bentley</str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Super Mazda car</str>
 <str name="category">sport</str>
 <str name="manufacturer">mazda</str>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Mercedes Benz car</str>
 <str name="category">limousine</str>
 <str name="manufacturer">mercedes</str>
 </doc>
 <doc>
 <str name="id">4</str>
 <str name="name">Super Honda car</str>
 <str name="category">sport</str>
 <str name="manufacturer">honda</str>
 </doc>
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="category">
 <int name="limousine">2</int>
 <int name="sport">2</int>
 </lst>
 <lst name="manufacturer">
 <int name="bentley">1</int>
 <int name="honda">1</int>
 <int name="mazda">1</int>
 <int name="mercedes">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

Now let's see how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

180

How it works...
Our data is very simple. As you can see in the field definition section of the schema.xml
file and the example data, every document is described by four fields—id, name, category,
and manufacturer. I think that their names speak for themselves and I don't need to
discuss them.

The first parts of the query are pretty standard. We ask for documents which have the word
car in their name field. Then we tell Solr to enable faceting (the facet=true parameter) and
we tell it what field will be used to calculate faceting results (the facet.field=category
and the facet.field=manufacturer parameters). Then we specify the limits. By adding
the parameter limits in a way shown in the example (f.FIELD_NAME.facet.limit) we
tell Solr to set the limits for the faceting calculation for the particular field. In our example
query, by adding the f.category.facet.limit=-1 parameter we told Solr that we don't
want any limits on the number of faceting results for the category field. By adding the
f.manufacturer.facet.limit=10 parameter we told Solr that we want a maximum of 10
faceting results for the manufacturer field.

Following the pattern you can specify per-field values for faceting properties such as sorting
and minimum count.

Using decision tree faceting
Imagine that in our store we have products divided into categories. In addition to that, we
store information about the stock of the items. Now, we want to show our crew how many of
the products in the categories are in stock and how many we are missing. The first thing that
comes to mind is using the faceting mechanism and some additional calculation. But why
bother, when Solr 4.0 can do that calculation for us with the use of so called pivot faceting.
This recipe will show you how to use it.

How to do it...
The following steps illustrate the use of pivot faceting:

1.	 Let's start with the following index structure (just add this to your schema.xml
file in the field definition section; we will use the category and stock fields
to do the faceting):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="category" type="string" indexed="true" stored="true"
/>
<field name="stock" type="boolean" indexed="true" stored="true" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

181

2.	 Now let's index the following example data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Book 1</field>
 <field name="category">books</field>
 <field name="stock">true</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Book 2</field>
 <field name="category">books</field>
 <field name="stock">true</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Workbook 1</field>
 <field name="category">workbooks</field>
 <field name="stock">false</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Workbook 2</field>
 <field name="category">workbooks</field>
 <field name="stock">true</field>
 </doc>
</add>

3.	 Let's assume we are running a query from the administration panel of our
shop and we are not interested in the documents at all; we only want to know
how many documents are in stock or out of stock for each of the categories.
The query implementing that logic should look like this:
http://localhost:8983/solr/select?q=*:*&rows=0&facet=true&facet.
pivot=category,stock

The response to the query is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">76</int>
 <lst name="params">
 <str name="facet">true</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

182

 <str name="indent">true</str>
 <str name="facet.pivot">category,stock</str>
 <str name="q">*:*</str>
 <str name="rows">0</str>
 </lst>
 </lst>
 <result name="response" numFound="4" start="0">
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 <lst name="facet_pivot">
 <arr name="category,stock">
 <lst>
 <str name="field">category</str>
 <str name="value">books</str>
 <int name="count">2</int>
 <arr name="pivot">
 <lst>
 <str name="field">stock</str>
 <bool name="value">true</bool>
 <int name="count">2</int>
 </lst>
 </arr>
 </lst>
 <lst>
 <str name="field">category</str>
 <str name="value">workbooks</str>
 <int name="count">2</int>
 <arr name="pivot">
 <lst>
 <str name="field">stock</str>
 <bool name="value">false</bool>
 <int name="count">1</int>
 </lst>
 <lst>
 <str name="field">stock</str>
 <bool name="value">true</bool>
 <int name="count">1</int>
 </lst>
 </arr>
 </lst>
 </arr>
 </lst>
 </lst>
</response>

You will notice that we received what we wanted, now let's see how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

183

How it works...
Our data is very simple. As you can see in the field definition section of the schema.xml file
and the example data, every document is described by four fields—id, name, category, and
stock. I think that their names speak for themselves and I don't need to discuss them.

The interesting things start with the query. We specified that we want the query to match all
the documents (q=*:* parameter), but we don't want to see any documents in the response
(rows=0 parameter). In addition to that, we want to have faceting calculation (facet=true
parameter) and we want to use the decision tree faceting, also known as pivot faceting. We
do that by specifying which fields should be included in the tree faceting. In our case we
want the top level of the pivot facet to be calculated on the basis of the category field,
and the second level (the one nested in the category field calculation) should be based
on the values available in the stock field. Of course, if you would like to have another value
of another field nested under the stock field you can do that by adding another field to the
facet.pivot query parameter. Assuming you would like to see faceting on the price field
nested under the stock field, your facet.pivot parameter would look like this: facet.
pivot=category,stock,price.

As you can see in the response, each nested faceting calculation result is written inside
the <arr name="pivot"> XML tag. So let's look at the response structure. The first
level of your facet pivot tree is based on the category field. You can see two books (<int
name="count">2</int>) in the books category (<str name="value">books</str>),
and these books have the stock field (<str name="field">stock</str>) set to true
(<bool name="value">true</bool>). For the workbooks category, the situation is a
bit different, because you can see two different sections there—one for documents with the
stock field equal to false, and the other with the stock field set to true. But in the end,
the calculation is correct and that's what we wanted!

Calculating faceting for relevant documents
in groups

If you have ever used the field collapsing functionality of Solr you may be wondering if there is a
possibility of using that functionality and faceting. Of course there is, but the default behavior still
works so that you get the faceting calculation on the basis of documents not document groups.
In this recipe, we will learn how to query Solr so that it returns facets calculated for the most
relevant document in each group in order for your user facet counts to be more or less grouped.

Getting ready
Before reading this recipe please look at the Using field to group results, Using query to group
results, and Using function query to group results recipes in Chapter 8, Using Additional Solr
Functionalities. Also, if you are not familiar with faceting functionality, please read the first
three recipes in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

184

How to do it...
1.	 As a first step we need to create an index. For the purpose of the recipe let's assume

that we have the following index structure (just add this to your schema.xml file to
the field definition section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="category" type="string" indexed="true" stored="true"
/>
<field name="stock" type="boolean" indexed="true" stored="true" />

2.	 The second step is to index the data. We will use some example data which looks
like this:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Book 1</field>
 <field name="category">books</field>
 <field name="stock">true</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Book 2</field>
 <field name="category">books</field>
 <field name="stock">true</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Workbook 1</field>
 <field name="category">workbooks</field>
 <field name="stock">false</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Workbook 2</field>
 <field name="category">Workbooks</field>
 <field name="stock">true</field>
 </doc>
</add>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

185

3.	 So now it's time for our query. So, let's assume we want our results to be grouped
on the values of the category field, and we want the faceting to be calculated on
the stock field. And remember that we are only interested in the most relevant
document from each result group when it comes to faceting. So, the query that
would tell Solr to do what we want should look like this:
http://localhost:8983/solr/select?q=*:*&facet=true&facet.
field=stock&group=true&group.field=category&group.truncate=true

The results for the query would look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
<int name="status">0</int>
<int name="QTime">2</int>
<lst name="params">
<str name="facet">true</str>
<str name="q">*:*</str>
<str name="group.truncate">true</str>
<str name="group.field">category</str>
<str name="group">true</str>
<str name="facet.field">stock</str>
</lst>
</lst>
<lst name="grouped">
<lst name="category">
<int name="matches">4</int>
<arr name="groups">
<lst>
<str name="groupValue">books</str>
<result name="doclist" numFound="2" start="0">
<doc>
<str name="id">1</str>
<str name="name">Book 1</str>
<str name="category">books</str>
<bool name="stock">true</bool></doc>
</result>
</lst>
<lst>
<str name="groupValue">workbooks</str>
 <result name="doclist" numFound="2" start="0">
 <doc>
 <str name="id">3</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Faceting Mechanism

186

 <str name="name">Workbook 1</str>
 <str name="category">workbooks</str>
 <bool name="stock">false</bool>
 </doc>
 </result>
 </lst>
 </arr>
 </lst>
 </lst>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="stock">
 <int name="false">1</int>
 <int name="true">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

As you can see everything worked as it should. Now let's see how it works.

How it works...
Our data is very simple. As you can see in the field definition section of the schema.xml file
and the example data, every document is described by four fields—id, name, category, and
stock. I think that their names speak for themselves and I don't need to discuss them.

As it comes to the query, we fetch all the documents from the index (the q=*:* parameter).
Next, we say that we want to use faceting and we want it to be calculated on the stock field.
We want a grouping mechanism to be active and we want to group documents on the basis of
the category field (all the query parameters responsible for defining the faceting and grouping
behavior are described in the appropriate recipes in this book, so please look at those if you
are not familiar with those parameters). And finally something new—the group.truncate
parameter is set to true. If set to true, like in our case, facet counts will be calculated using
only the most relevant document in each of the calculated groups. So in our case, for the group
with the category field equal to books, we have the true value in the stock field and for the
second group we have false in the stock field. Of course we are looking at the most relevant
documents, so the first ones in our case. So, as you can easily see, we've got two facet counts
for the stock field, both with a count of 1, which is what we would expect.

There is one thing more—at the time of writing this book, the group.truncate parameter
was not supported when using distributed search, so please be aware of that.

www.it-ebooks.info

http://www.it-ebooks.info/

6
Improving Solr

Performance

In this chapter we will cover:

ff Paging your results quickly

ff Configuring the document cache

ff Configuring the query result cache

ff Configuring the filter cache

ff Improving Solr performance right after the start up or commit operation

ff Caching whole result pages

ff Improving faceting performance for low cardinality fields

ff What to do when Solr slows down during indexing

ff Analyzing query performance

ff Avoiding filter caching

ff Controlling the order of execution of filter queries

ff Improving the performance of numerical range queries

Introduction
Performance of the application is one of the most important factors. Of course, there are
other factors, such as usability and availability—we could recite many more—but one of the
most crucial is performance. Even if our application is perfect in terms of usability, the
users won't be able to use it if they will have to wait for minutes for the search results.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

188

The standard Solr deployment is fast enough, but sooner or later a time will come when
you will have to optimize your deployment. This chapter and its recipes will try to help you
with the optimization of Solr deployment.

If your business depends on Solr, you should keep monitoring it even after optimization.
There are numerous solutions available in the market, from the generic and open-sourced
ones such as Gangila (http://ganglia.sourceforge.net/) to search-specific ones
such as Scalable Performance Monitoring (http://www.sematext.com/spm/index.
html) from Sematext.

Paging your results quickly
Imagine a situation where you have a user constantly paging through the search results.
For example, one of the clients I was working for was struggling with the performance of his
website. His users tend to search for a word and then page through the result pages – the
statistical information gathered from the application logs showed that typical users changed
the page about four to seven times. Apart from improving the query relevance (which isn't
what we will talk about in this recipe), we decided to optimize the paging. How do we do that?
This recipe will show you.

How to do it...
So, let's get back to my client deployment. As I mentioned, typical users typed a word into
the search box and then used the paging mechanism to go through a maximum of seven
pages. My client's application was showing 20 documents on a single page. So, it can be
easily calculated that we need about 140 documents in advance, apart from the first 20
documents returned by the query.

1.	 So what we did was actually pretty simple. First of all, we modified the
queryResultWindowSize property in the solrconfig.xml file and changed
it to the following value:
<queryResultWindowSize>160</queryResultWindowSize>

2.	 We then changed the maximum number of documents that can be cached for a
single query to 160, by adding the following property to the solrconfig.xml file:

<queryResultMaxDocsCached>160</queryResultMaxDocsCached>

We also modified queryResultCache, but that's a discussion for another recipe. To learn
how to change that cache, please refer to the How to configure the query result cache recipe
in this chapter.

www.it-ebooks.info

http://ganglia.sourceforge.net/
http://www.it-ebooks.info/

Chapter 6

189

How it works...
So how does Solr behave with the changes proposed in the preceding section? First of all,
queryResultWindowSize tells Solr to store (in documentCache) a maximum of the 160
documents IDs with every query. Therefore, after doing the initial query, we gather more
documents than we actually need. Because of this we are sure that when a user clicks on
the next page button, which is present in our application, the results will be taken from the
cache. So there won't be a need for intensive I/O operations. You must remember that the
160 documents IDs will be stored in the cache and won't be visible in the results list, as the
result size is controlled by the rows parameter.

The queryResultMaxDocsCached property tells Solr about the maximum number of
document IDs that can be cached for a single query (please remember than in this case, the
cache stores the document identifiers and not whole documents). We told Solr that we want
a maximum of 160 document IDs for a single query, because the statistics showed us that
we don't need more, at least for a typical user.

Of course, there is another thing that should be done – setting the query result cache size,
but that is discussed in another recipe.

Configuring the document cache
Cache can play a major role in your deployment's performance. One of the caches that you can
configure when setting up Solr is the document cache. It is responsible for storing the Lucene
internal documents that have been fetched from the disk. The proper configuration of this
cache can save precious I/O calls and therefore boost the whole deployment performance.
This recipe will show you how to properly configure the document cache.

How to do it...
For the purpose of this recipe, I assumed that we are dealing with the deployment of Solr
where we have about 100, 000 documents. In our case, a single Solr instance is getting a
maximum of 10 concurrent queries and the maximum number of documents that a query
can fetch is 256.

With the preceding parameters, our document cache should look similar to the following code
snippet (add this code to the solrconfig.xml configuration file):

<documentCache
 class="solr.LRUCache"
 size="2560"
 initialSize="2560"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

190

Notice that we didn't specify the autowarmCount parameter—this is because the document
cache uses Lucene's internal ID to identify documents. These identifiers can't be copied
between index changes and thus we can't automatically warm this cache.

How it works...
The document cache configuration is simple. We define it in the documentCache XML tag
and specify a few parameters that define the document cache's behavior. First of all, the
class parameter tells Solr which Java class should be used for implementation. In our
example, we use solr.LRUCache because we will be adding more information into the
cache than we will be fetching from it. When you see that you are getting more information
than you add, consider using solr.FastLRUCache. The next parameter tells Solr the
maximum size of the cache (the size parameter). As the Solr wiki says, we should always
set this value to more than the maximum number of results returned by the query multiplied
by the maximum concurrent queries than we think will be sent to the Solr instance. This will
ensure that we always have enough place in the cache, so that Solr will not have to fetch the
data from the index multiple times during a single query.

The last parameter tells Solr the initial size of the cache (the initialSize parameter). I
tend to set it to the same value as the size parameter to ensure that Solr won't be wasting
its resources on cache resizing.

The more fields marked as stored in the index structure, the higher
the memory usage of this cache will be.

Please remember that when using the values shown in this example, you must always observe
your Solr instance and act when you see that your cache is acting in the wrong way. Remember
that having a very large cache with very low hit rate can be worse than having no cache at all.

Along with everything else, you should pay attention to your cache usage as your Solr instances
work. If you see evictions, then this may be a signal that your caches are too small. If you
have a very poor hit rate, then it's sometimes better to turn the cache off. Cache setup is one
of those things in Apache Solr that is very dependent on your data, queries, and users; so I'll
repeat once again—keep an eye on your caches and don't be afraid to react and change them.

Configuring the query result cache
The major Solr role in a typical e-commerce website is handling user queries. Of course, users
of the site can type multiple queries in the Search box and we can't easily predict how many
unique queries there may be. But, using the logs that Solr gives us, we can check how many
different queries there were in the last day, week, month, or year. Using this information, we
can configure the query result cache to suit our needs in the most optimal way, and this recipe
will show you how to do it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

191

How to do it...
For the purpose of this recipe, let's assume that one Solr instance of our e-commerce website
is handling about 10 to 15 queries per second. Each query can be sorted by four different
fields (the user can choose by which field). The user can also choose the order of sort. By
analyzing the logs for the past three months, we know that there are about 2000 unique
queries that users tend to type in the search box of our application. We also noticed that
our users don't usually use the paging mechanism.

On the basis of this information, we configure our query results cache as follows (add this
code to the solrconfig.xml configuration file):

<queryResultCache
 class="solr.LRUCache"
 size="16000"
 initialSize="16000"
 autowarmCount="4000"/>

How it works...
Adding the query result cache to the solrconfig.xml file is a simple task. We define it in
the queryResultCache XML tag and specify a few parameters that define the query result's
cache behavior. First of all, the class parameter tells Solr which Java class should be used
for implementation. In our example, we use solr.LRUCache because we will be adding
more information into the cache than we will fetching from it. When you see that you are get
more information than you add, consider using solr.FastLRUCache. The next parameter
tells Solr about the maximum size of the cache (the size parameter). This cache should be
able to store the ordered identifiers of the objects that were returned by the query with its
sort parameter and the range of documents requested. This means that we should take
the number of unique queries, multiply it by the number of sort parameters and the number
of possible orders of sort. So in our example, the size should be at least the result of the
following equation:

size = 2000 * 4 * 2

In our case, it is 16,000.

I tend to set the initial size of this cache to the maximum size; so in our case, I set the
initialSize parameter to a value of 16000. This is done to avoid the resizing of the cache.

The last parameter (autowarmCount) says how many entries should be copied when Solr
invalidates caches (for example, after a commit operation). I tend to set this parameter to
a quarter of the maximum size of the cache. This is done because I don't want the caches
to be warming for too long. However, please remember that the auto-warming time depends
on your deployment and the autowarmCount parameter should be adjusted if needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

192

Please remember that when using the values shown in this example, you must always observe
your Solr instance and act when you see that your cache is acting in the wrong way.

Along with everything else, you should pay attention to your cache usage as your Solr instances
work. If you see evictions, then this may be a signal that your caches are too small. If you
have a very poor hit rate, then it's sometimes better to turn the cache off. Cache setup is one
of those things in Apache Solr that is very dependent on your data, queries, and users; so I'll
repeat once again—keep an eye on your caches and don't be afraid to react and change them.

Configuring the filter cache
Almost every client of mine who uses Solr, tends to forget or simply doesn't know how to use
filter queries or simply filters. People tend to add another clause with a logical operator to the
main query—they forget how efficient filters can be, at least when used wisely. And that's why
whenever I can, I tell people using Solr to use filter queries. But when using filter queries, it is
nice to know how to set up a cache that is responsible for holding the filters results – the filter
cache. This recipe will show you how to properly set up the filter cache.

How to do it...
For the purpose of this recipe, let's assume that we have a single Solr slave instance to
handle all the queries coming from the application. We took the logs from the last three
months and analyzed them. From this we know, that our queries are making about 2000
different filter queries. By getting this information, we can set up the filter cache for our
instance. This configuration should look similar to the following code snippet (add this
code to the solrconfig.xml configuration file):

<filterCache
 class="solr.FastLRUCache"
 size="2000"
 initialSize="2000"
 autowarmCount="1000"/>

That's it. Now let's see what those values mean.

How it works...
As you may have noticed, adding the filter cache to the solrconfig.xml file is a simple
task; you just need to know how many unique filters your Solr instance is receiving. We define
this in the filterCache XML tag and specify a few parameters that define the query result
cache behavior. First of all, the class parameter tells Solr which Java class should be used
for implementation. In our example, we use solr.LRUCache because we will be adding more
information into the cache than we will fetching from it. When you see that you are getting
more information than you add, consider using solr.FastLRUCache.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

193

The next parameter tells Solr the maximum size of the cache (the size parameter). In our
case, we said that we have about 2000 unique filters and we set the maximum size to that
value. This is done because each entry of the filter cache stores the unordered sets of Solr
document identifiers that match the given filter. In this way, after the first use of the filter,
Solr can use the filter cache to apply filtering and thus save the I/O operations.

The next parameter – initialSize tells Solr about the initial size of the filter cache. I tend
to set it's value to the same as that of the size parameter to avoid cache resizing. So in our
example, we set it to the value of 2000.

The last parameter (autowarmCount) says how many entries should be copied when Solr
invalidates caches (for example, after a commit operation). I tend to set this parameter to
a quarter of the maximum size of the cache. This is done because I don't want the caches
to be warming for too long. However, please remember that the auto-warming time depends
on your deployment and the autowarmCount parameter should be adjusted if needed.

Please remember that when using the values shown in this example, you must always observe
your Solr instance and act when you see that your cache is acting in the wrong way.

Along with everything, you should pay attention to your cache usage as your Solr instances
work. If you see evictions, then this may be a signal that your caches are too small. If you have
a very poor hit rate, then it's sometimes better to turn the cache off. Cache setup is one of those
things in Apache Solr that is very dependent on your data, queries, and users; so I'll repeat once
again—keep an eye on your caches and don't be afraid to react and change them. For example,
take a look at the following screenshot that shows that the filter cache is probably too small,
because the evictions are happening (this is a screenshot of the Solr administration panel):

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

194

Improving Solr performance right after the
startup or commit operation

Anyone with some experience with Solr would have noticed that – right after the startup, Solr
doesn't have as much of an improved query performance as after running a while. This happens
because Solr doesn't have any information stored in caches, the I/O is not optimized, and so on.
Can we do something about it? Of course we can, and this recipe will show you how to do it.

How to do it...
The following steps will explain how we can enhance Solr performance right after the startup
or commit operation:

1.	 First of all, we need to identify the most common and the heaviest queries that we send
to Solr. I have two ways of doing this—first of all, I analyze the logs that Solr produces
and see how queries behave. I tend to choose those queries that are run often and
those that run slowly in my opinion. The second way of choosing the right queries is by
analyzing the application that use Solr and seeing what queries they produce, which
queries will be the most crucial, and so on. Based on my experience, the log-based
approach is usually much faster and can be done using self-written scripts.

But let's assume that we have identified the following queries as good candidates:

q=cats&fq=category:1&sort=title+desc,value+desc,score+desc
q=cars&fq=category:2&sort=title+desc
q=harry&fq=category:4&sort=score+desc

2.	 What we will do next is just add the so called warming queries to the solrconfig.
xml file. So the listener XML tag definition in the solrconfig.xml file should
look similar to the following code snippet:

<listener event="firstSearcher"
 class="solr.QuerySenderListener">
 <arr name="queries">
 <lst>
 <str name="q">cats</str>
 <str name="fq">category:1</str>
 <str name="sort">
 title desc,value desc,score desc
 </str>
 <str name="start">0</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

195

 <str name="rows">20</str>
 </lst>
 <lst>
 <str name="q">cars</str>
 <str name="fq">category:2</str>
 <str name="sort">title desc</str>
 <str name="start">0</str>
 <str name="rows">20</str>
 </lst>
 <lst>
 <str name="q">harry</str>
 <str name="fq">category:4</str>
 <str name="sort">score desc</str>
 <str name="start">0</str>
 <str name="rows">20</str>
 </lst>
 </arr>
</listener>

Basically we added the so-called warming queries to the startup of Solr. Now let's
see how it works.

How it works...
By adding the preceding fragment of configuration to the solrconfig.xml file, we told
Solr that we want it to run those queries whenever a firstSearcher event occurs. The
firstSearcher event is fired whenever a new searcher object is prepared and there is
no searcher object available in the memory. So basically, the firstSearcher event
occurs right after Solr startup.

So what happens after Solr startup? After adding the preceding fragment, Solr runs each
of the defined queries. By doing this, the caches get populated with the entries that are
significant for the queries that we identified. This means that if we did the job right, we
have Solr configured and ready to handle the most common and heaviest queries right
after its startup.

Let's just go over what all the configuration options mean. The warm up queries are always
defined under the listener XML tag. The event parameter tells Solr what event should
trigger the queries; in our case, it is firstSearcher. The class parameter is the Java
class that implements the listener mechanism. Next, we have an array of queries that
are bound together by the array tag with the name="queries" parameter. Each of
the warming queries is defined as a list of parameters that are grouped by the lst tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

196

There's more...
There is one more thing that I would like to mention (in the following section).

Improving Solr performance after commit operations
If you are interested in improving the performance of your Solr instance, you should also look
at the newSearcher event. This event occurs whenever a commit operation is performed
by Solr (for example, after replication). Assuming that we identified the same queries as
before as good candidates to warm the caches, we should add the following entries to the
solrconfig.xml file:

<listener event="newSearcher" class="solr.QuerySenderListener">
 <arr name="queries">
 <lst>
 <str name="q">cats</str>
 <str name="fq">category:1</str>
 <str name="sort">title desc,value desc,score desc</str>
 <str name="start">0</str>
 <str name="rows">20</str>
 </lst>
 <lst>
 <str name="q">cars</str>
 <str name="fq">category:2</str>
 <str name="sort">title desc</str>
 <str name="start">0</str>
 <str name="rows">20</str>
 </lst>
 <lst>
 <str name="q">harry</str>
 <str name="fq">category:4</str>
 <str name="sort">score desc</str>
 <str name="start">0</str>
 <str name="rows">20</str>
 </lst>
 </arr>
</listener>

Please remember that the warming queries are especially important for the caches that
can't be automatically warmed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

197

Caching whole result pages
Imagine a situation where you have an e-commerce library and your data changes rarely. What
can you do to take away the stress on your search servers? The first thing that comes to mind
is caching; for example, HTTP caching. And yes, that is a good point. But do we have to set up
external caches prior to Solr, or can we tell Solr to use its own caching mechanism? We can
use Solr to cache whole result pages and this recipe will show you how to do it.

Getting ready
Before you continue to read this recipe, it would be nice for you to know some basics about
the HTTP cache headers. To learn something about it, please refer to the RFC document that
can be found on the W3 site at http://www.w3.org/Protocols/rfc2616/rfc2616-
sec13.html.

How to do it...
So let's configure the HTTP cache. To do this, we need to configure the Solr request
dispatcher. Let's assume that our index changes every 60 minutes.

1.	 Let's start by replacing the request dispatcher definition in the solrconfig.xml
file with the following content:
<requestDispatcher handleSelect="true">
 <httpCaching lastModifiedFrom="openTime"
 etagSeed="Solr">
 <cacheControl>max-age=3600, public</cacheControl>
 </httpCaching>
</requestDispatcher>

2.	 Now, let's try sending a query similar to the following to see the HTTP headers:

http://localhost:8983/solr/select?q=book

We get the following HTTP headers:
HTTP/1.1 200 OK

Cache-Control: max-age=3600, public

Expires: Tue, 11 Sep 2012 16:44:56 GMT

Last-Modified: Tue, 11 Sep 2012 15:43:24 GMT

ETag: "YzAwMDAwMDAwMDAwMDAwMFNvbHI="

Content-Type: application/xml; charset=UTF-8

Transfer-Encoding: chunked

From this we can tell that cache works.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

198

How it works...
The cache definition is defined inside the requestDispatcher XML tag. The
handleSelect="true" attribute describes error handling and it should be set to
true. Then, we see the httpCaching tag (notice the lack of the <httpCaching
never304="true"> XML tag), which actually configures the HTTP caching in Solr. The
lastModifiedFrom="openTime" attribute defines that the last modified HTTP header
will be relative to when the current searcher object was opened (for example, relative to the
last replication execution date). You can also set this parameter value to dirLastMod to
be relative to when the physical index was modified. Next, we have the eTagSeed attribute,
which is responsible for generating the ETag HTTP cache header.

The next configuration tag is the cacheControl tag, which can be used to specify the
generation of the cache control HTTP headers. In our example, adding the max-age=3600
parameter tells Solr that it should generate an additional HTTP cache header, which will
confirm that the cache is valid for a maximum of one hour. The public directive means
that the response can be cached by any cache type.

As you can see from the response, the headers that we got as a part of the results returned
by Solr tell us that we got what we wanted.

Improving faceting performance for low
cardinality fields

Let's assume that our data which we use to calculate faceting can be considered to have low
distinct values. For example, we have an e-commerce shop with millions of products – clothes.
Each document in our index, apart from name and price, is also described by additional
information – target size. So, we have values such as XS, S, M, L, XL, and XXL (that is, six
distinct values), and each document can only be described with a single value. In addition to
this, we run field faceting on that information and it doesn't work fast by default. This recipe
will show you how to change that.

How to do it...
The following steps will explain how we can improve faceting performance for low
cardinality fields:

1.	 Let's begin with the following index structure (add the following entries to your
schema.xml fields section):
<field name="id " type="string" indexed="true"
 stored="true" required="true" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

199

<field name="name " type="text " indexed="true"
 stored="true" />
<field name="size" type="string" indexed="true"
 stored="true" />

The size field is the one in which we store our XS, S, M, L, XL, and XXL values
(remember: one value per document).

2.	 Assuming that our user typed black skirt into the Search box, our query would
look similar to the following code snippet:
q=name:(black+skirt)&q.op=AND&facet=true&facet.field=size

Assuming that the query is matching one-fourth of our documents, we can expect
the query to be executing longer than usual. This is because the default faceting
calculation is optimized for fields that have many unique values in the index and
we have the opposite—we have many documents but few unique terms.

3.	 In order to speed up faceting in our case, let's add the facet.method=enum
parameter to our query, so that it looks similar to the following code snippet:

q=name:(black+skirt)&q.op=AND&facet=true&facet.field=size&facet.
method=enum

If you measure the performance before and after the change you will notice the difference;
let's discuss why.

How it works...
Let's take a look at the query—we search for the given words in the name field using the AND
logical operator (q.op parameter). As our requirements state, we also run faceting on the
size field (facet=true and facet.field=size parameters).

We know that our fields have only six distinct values, and we also assumed that our queries
can return vast amount of documents. To handle such faceting calculation faster than the
default method, we decided to use the enum method of facet calculation. The default faceting
calculation method (facet.method=fc) iterates over documents that match the query and
sums the terms that appear in the field that we are calculating faceting on. The enum method
does the other thing – it enumerates all the terms in the field that we want to calculate
faceting on, and intersects the documents that match the query with the documents that
match the enumerated terms. In this way, less time and processing is needed to calculate
field faceting for low cardinality fields, such as size in our case, and thus we see faster
query execution.

It is good to know that for field faceting on Boolean fields, Solr uses the enum faceting method
by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

200

There's more...
You can also use the faceting method for each field you perform faceting upon.

Specifying faceting method per field
If you have multiple fields on which you run faceting, then you may only want to change the
method for one of them (or more than one, but not all). To do that, instead of adding the
facet.method=enum parameter, you can add the facet.FIELD_NAME.method=enum
parameter for each field whose faceting calculation method you would want to change. For
example, if you would like to change the faceting method for the size field, you can add the
following parameter:

facet.size.method=enum

What to do when Solr slows down during
indexing

One of the most common problems when indexing a vast amount of data is the indexing time.
Some of the problems with indexing time are not easily resolvable, but others are. Imagine that
you need to index about 300,000 documents that are in a single XML file. You run the post.
sh bash script that is provided with Solr and you wait, wait, and wait. Something is wrong –
when you index 10,000 documents you need about a minute, but now you are waiting about
an hour and the commit operation didn't take place. Is there something we can do to speed
it up? Sure, and this recipe will tell you how to.

How to do it...
The solution to the situation is very simple – just add the commit operation every now and then.
But as you may have noticed, I mentioned that our data is written in a single XML file. So, how do
we add the commit operation to that kind of data? Send it in parallel to the indexing process?
No, we need to enable the auto commit mechanism. To do that, let's modify the solrconfig.
xml file, and change the update handler definition to the following one:

<updateHandler class="solr.DirectUpdateHandler2">
 <autoCommit>
 <maxTime>60000</maxTime>
 <openSearcher>true</openSearcher>
 </autoCommit>
</updateHandler>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

201

If you start the indexing described in the indexing process, you will notice that a commit
command will be sent once a minute while the indexing process is takes place. Now, let's
see how it works.

How it works...
Solr tends to slow down the indexing process when indexing a vast amount of data without the
commit commands being sent once in a while. This behavior is completely understandable
and is bound to the memory and how much of it Solr can use.

We can avoid the slowing down behavior by adding the commit command after the set
amount of time or set amount of data. In this recipe, we choose the first approach.

We assumed that it would be good to send the commit command once every minute. So we add
the <autoCommit> section with the <maxTime> XML tag set to a value of 60000. This value is
specified in milliseconds. We've also specified that we want the search to be reopened after the
commit and thus the data available for search (the <openSearcher>true</openSearcher>
option). If you would only like to write the data to the index and not have it available for search,
just change the <openSearcher>true</openSearcher> option to false. That's all we
need to do. After this change, Solr will send a commit command after every minute passes
during the indexing operation, and we don't have to worry that Solr indexing speed will
decrease over time.

There's more...
There are two more things about automatic commits that should be mentioned.

Commit after a set amount of documents
Sometimes, there is a need to rely not on the time between commit operations, but on the
amount of documents that were indexed. If this is the case, we can choose to automatically
send the commit command after a set amount of documents are processed. To do this, we
add the <maxDocs> XML tag with the appropriate amount. For example, if we want to send
the commit command after every 50000 documents, the update handler configuration
should look similar to the following code snippet:

<updateHandler class="solr.DirectUpdateHandler2">
 <autoCommit>
 <maxDocs>50000</maxDocs>
 <openSearcher>true</openSearcher>
 </autoCommit>
</updateHandler>

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

202

Commit within a set amount of time
There may be situations when you want some of the document to be committed faster than
the auto commit settings. In order to do that, you can add the commitWithin attribute to
the <add> tag of your data XML time. This attribute will tell Solr to commit the documents
within the specified time (specified in milliseconds). For example, if we want the portion of
documents to be indexed within 100 milliseconds, our data file would look similar to the
following code snippet:

<add commitWithin="100">
 <doc>
 <field name="id">1</field>
 <field name="title">Book 1</field>
 </doc>
</add>

Analyzing query performance
Somewhere along the experience with Apache Solr (and not only Solr), you'll end up at a point
where some of your queries are not running as you would like them to run – some of them are
just slow. Of course, such a situation is not desirable and we have to do something to make
those queries run faster. But how do we know which part of the query is the one we should
look at ? This recipe will tell you what information you can get from Solr.

How to do it...
The following steps will help you analyze query performance:

1.	 Let's start with the assumption that we have a query that has parts that are not as
fast as we would like it to be. The query is as follows:
http://localhost:8983/solr/select?q=metal&facet=true&facet.
field=date&facet.query=from:[10+TO+2000]

2.	 In order to get the information we want, we need to add the debugQuery=true
parameter to our query, so that it looks similar to the following code snippet:
http://localhost:8983/solr/select?q=metal&facet=true&facet.
field=date&facet.query=from:[10+TO+2000]&debugQuery=true

The response from Solr is as follows (I've cut some parts of the response, because
it is quite large and we are only interested in the last section):

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">427</int>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

203

 </lst>
 <result name="response" numFound="61553" start="0">
 <doc>
 (...)
 </doc>
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries">
 <int name="from:[10 TO 2000]">50820</int>
 </lst>
 <lst name="facet_fields">
 <lst name="date">
 <int name="0">61553</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
 <lst name="debug">
 <str name="rawquerystring">metal</str>
 <str name="querystring">metal</str>
 <str name="parsedquery">Body:metal</str>
 <str name="parsedquery_toString">Body:metal</str>
 <lst name="explain">
 (...)
 </lst>
 <str name="QParser">LuceneQParser</str>
 <lst name="timing">
 <double name="time">426.0</double>
 <lst name="prepare">
 <double name="time">15.0</double>
 <lst name="org.apache.solr
 .handler.component.QueryComponent">
 <double name="time">14.0</double>
 </lst>
 <lst name="org.apache.
 solr.handler.component.FacetComponent">
 <double name="time">0.0</double>
 </lst>
 <lst name="org.apache.solr
 .handler.component.MoreLikeThisComponent">
 <double name="time">0.0</double>
 </lst>
 <lst name="org.apache.solr
 .handler.component.HighlightComponent">
 <double name="time">0.0</double>
 </lst>

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

204

 <lst name="org.apache.solr
 .handler.component.StatsComponent">
 <double name="time">0.0</double>
 </lst>
 <lst name="org.apache.solr
 .handler.component.DebugComponent">
 <double name="time">0.0</double>
 </lst>
 </lst>
 <lst name="process">
 <double name="time">411.0</double>
 <lst name="org.apache.solr
 .handler.component.QueryComponent">
 <double name="time">43.0</double>
 </lst>
 <lst name="org.apache.solr
 .handler.component.FacetComponent">
 <double name="time">360.0</double>
 </lst>
 <lst name="org.apache.solr
 .handler.component.MoreLikeThisComponent">
 <double name="time">0.0</double>
 </lst>
 <lst name="org.apache.solr
 .handler.component.HighlightComponent">
 <double name="time">0.0</double>
 </lst>
 <lst name="org.apache.solr
 .handler.component.StatsComponent">
 <double name="time">0.0</double>
 </lst>
 <lst name="org.apache.solr
 .handler.component.DebugComponent">
 <double name="time">8.0</double>
 </lst>
 </lst>
 </lst>
 </lst>
 </response>

As you can see in the preceding response, there is some information about query time.
So let's see what it means.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

205

How it works...
Let's not concentrate on the query, because it is only an example that allows us to discuss
what we want to achieve. We've added a single parameter to the query – debugQuery=true.
This parameter turns on the debug mode in Solr, as you can see in the response.

The debug mode is divided into few categories. All these categories are nested inside the
<lst name="debug"> XML tag. The first few entries let you see how the query parser
parses your query and how it is passed to Lucene, but it's beyond the scope of this chapter
to explain this. Similar information is nested inside the <lst name="explain"> XML tag;
we will talk about it in Chapter 9, Dealing with Problems.

What we are interested in is the information nested inside the <lst name="timing">
XML tag. The first information you see under this tag is the total time of your query, which
in our case is 426 milliseconds (<double name="time">426.0</double>). We have
the following two lists:

ff <lst name="prepare"> holds information regarding the query preparation time

ff <lst name="process"> holds information regarding the query execution time

You can see that nested inside those lists are components and their time.

The prepare list tells us how much time each component spends during the query
preparation phase. For example, we can see that org.apache.solr.handler.
component.QueryComponent spent 14.0 milliseconds during preparation time.

The process list tells us how much time was spent during the query processing phase,
which is the phase that is usually the longest one, because of all the computation and
I/O operations needed to execute the query. You can see that in our case, there were three
components that were working for longer than 0 milliseconds. The last one (org.apache.
solr.handler.component.DebugComponent) is the component that we added with
the query parameter, and we can skip it as it won't be used during production queries.
The second component, which was running for 43 milliseconds, was org.apache.solr.
handler.component.QueryComponent, which is responsible for parsing the query
and running it. It still takes about 10 percent time of the whole query, which is not what
we are looking for. The component that took the most amount of the query execution time
is org.apache.solr.handler.component.FacetComponent; it was working for
360 milliseconds, so for almost 90 percent of the query execution time.

As you can see, with the use of the debugQuery parameter, we identified which part of the
query is problematic and we can start optimizing it; But it's beyond the scope of this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

206

Avoiding filter caching
Imagine that some of the filters you use in your queries are not good candidates for caching.
You may wonder why, for example, those filters have a date and time with seconds or are
spatial filters scattered all over the world. Such filters are quite unique and when added to
the cache, their entries can't be reused much. Thus they are more or less useless. Caching
such filters is a waste of memory and CPU cycles. Is there something you can do to avoid filter
queries caching? Yes, there is a way and this recipe will show you how to do it.

How to do it...
Let's assume we have the following query being used to get the information we need:

q=solr+cookbook&fq=category:books&fq=date:2012-06-12T13:22:12Z

The filter query we don't want to cache is the one filtering our documents on the basis of the
date field. Of course, we still want the filtering to be done. In order to turn off caching, we
need to add {!cache=false} to our filter with the date field, so that our query should look
similar to the following code snippet:

q=solr+cookbook&fq=category:books&fq={!cache=false}date:2012-06-
12T13:22:12Z

Now let's take a look at how this works.

How it works...
The first query is very simple; we just search for the words solr cookbook and we want the
result set to be narrowed in the books category. We also want to narrow the results further to
only those that have 2012-06-12T13:22:12Z in the date field.

As you can imagine, if we have many filters with such dates as the one in the query, the
filter cache can be filled very fast. In addition to this, if you don't reuse the same value for
that field, the entry in the field cache becomes pretty useless. That's why, by adding the
{!cache=false} part to the filter query, we tell Solr that we don't want the filter query
results to be put into the filter cache. With such an approach we won't pollute the filter cache
and thus save some CPU cycles and memory. There is one more thing – the filters that are
not cached will be executed in parallel with the query, so this may be an improvement to your
query execution time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

207

Controlling the order of execution of filter
queries

If you use filter queries extensively, which isn't a bad thing at all, you may be wondering if
there is something you can do to improve the execution time of some of your filter queries.
For example, if you have some filter queries that use heavy function queries, you may want
to have them executed only on the documents that passed all the other filters. Let's see how
we can do this.

Getting ready
Before continuing reading please read the Avoiding filter caching recipe in this chapter.

How to do it...
The following steps will explain how we can control the order of execution of filter queries:

1.	 Let's assume we have the following query being used to get the information we need:
q=solr+cookbook&fq=category:books&fq={!frange l=10 u=100}log(sum(s
qrt(popularity),100))&fq={!frange l=0 u=10}if(exists(price_a),sum(
0,price_a),sum(0,price))

2.	 For the purpose of this recipe, let's also assume that fq={!frange l=10 u=100}
log(sum(sqrt(popularity),100)) and fq={!frange l=0 u=10}if(exis
ts(price_a),sum(0,price_a),sum(0,price)) are the filter queries that are
heavy and we would like those filters to be executed as the previous ones. We would
also like the second filter to execute only on the documents that were narrowed by
other filters. In order to do this, we need to modify our query so that it looks similar to
the following code snippet:

q=solr+cookbook&fq=category:books&fq={!frange l=10 u=100
cache=false cost=50}log(sum(sqrt(popularity),100))&fq={!frange l=0
u=10 cache=false cost=150}if(exists(price_promotion),sum(0,price_
promotion),sum(0,price))

As you can see, we've added other two attributes: cache=false and cost having values as
50 and 150. Let's see what they mean.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Solr Performance

208

How it works...
As you can see, we search for the words solr cookbook in the first query and we want the
result set to be narrowed by book category. We also want the documents to be narrowed to
only those that have a value of the log(sum(sqrt(popularity),100)) function between
10 and 100. In addition to this, the last filter query specifies that we want our documents to
be filtered to only those that have a price_promotion field (price if price_promotion
isn't filled) value between 0 and 10.

Our requirements are such that the second filter query (the one with log function query)
should be executed after the fq=category:books filter query and the last filter should
be executed in the end, only on the documents narrowed by other filters. To do this, we set
those two filters to not cache and we introduced the cost parameter. The cost parameter
in filter queries specifies the order in which non-cached filter queries are executed; the higher
the cost value, the later the filter query will be executed. So our second filter (the one with
cost=50) should be executed after the fq=category:books filter query and the last filter
query (the one with cost=150) are executed. In addition to this, because the cost of the
second non-cached filter query is higher or equal to 100, this filter will be executed only on
the documents that matched the main query and all the other filters. So our requirements
have been completed.

Forgive me, but I have to say it once again—please remember that the cost attribute only
works when the filter query is not cached.

Improving the performance of numerical
range queries

Let's assume we have the Apache Solr 4.0 deployment where we use range queries. Some
of those are run against string fields, while others are run against numerical fields. Using
different techniques, we identified that our numerical range queries execute slower than we
would like. The usual question arises – is there something that we can do ? Of course, and
this recipe will show you what.

How to do it...
The following steps will explain how we can control the order of execution of numerical
range queries:

1.	 Let's begin with the definition of a field that we use to run our numerical
range queries:
<field name="price" type="float" indexed="true" stored="true"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

209

2.	 The second step is to define the float field type:
<fieldType name="float" class="solr.TrieFloatField"
precisionStep="8" positionIncrementGap="0"/>

3.	 Now the usual query that is run against the preceding field is as follows:
q=*:*&fq=price:[10.0+TO+59.00]&facet=true&facet.field=price

4.	 In order to have your numerical range queries performance improved, there is just a
single thing you need to do – decrease the precisionStep attribute of the float
field type; for example, from 8 to 4. So, our field type definition would look similar to
the following code snippet:

<fieldType name="float" class="solr.TrieFloatField"
precisionStep="4" positionIncrementGap="0"/>

After the preceding change, you will have to re-index your data and your numerical
queries should be run faster. How faster, depends on your setup. Now let's take a
look at how it works.

How it works...
As you can see, in the preceding examples, we used a simple float-based field to run
numerical range queries. Before the changes, we specified precisionStep on our field type
as 8. This attribute (specified in bits) tells Lucene (which Solr is built on top of) how many
tokens should be indexed for a single value in such a field. Smaller precisionStep values
(when precisionStep > 0) will lead to more tokens being generated by a single value and
thus make range queries faster. Because of this, when we decreased the precisionStep
value from 8 to 4, we saw a performance increase.

However, please remember that decreasing the precisionStep value will lead to slightly
larger indices. Also, setting the precisionStep value to 0 turns off indexing of multiple
tokens per value, so don't use that value if you want your range queries to perform faster.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

7
In the Cloud

In this chapter we will cover:

ff Creating a new SolrCloud cluster

ff Setting up two collections inside a single cluster

ff Managing your SolrCloud cluster

ff Understanding the SolrCloud cluster administration GUI

ff Distributed indexing and searching

ff Increasing the number of replicas on an already live cluster

ff Stopping automatic document distribution among shards

Introduction
As you know, Apache Solr 4.0 introduced the new SolrCloud feature that allows us to use
distributed indexing and searching on a full scale. We can have automatic index distribution
across multiple machines, without having to think about doing it in our application. In this
chapter, we'll learn how to manage our SolrCloud instances, how to increase the number
of replicas, and have multiple collections inside the same cluster.

Creating a new SolrCloud cluster
Imagine a situation where one day you have to set up a distributed cluster with the use of Solr.
The amount of data is just too much for a single server to handle. Of course, only you can set
up a second server or go for another master database with another set of data. But before
Solr 4.0, you would have to take care of the data distribution yourself. In addition to this, you
would also have to take care of setting up replication, thinking about data duplication, and so
on. You don't have to do this now because Solr 4.0 can do it for you. Let's see how.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

212

Getting ready
Before continuing, I advise you to read the Installing standalone ZooKeeper recipe in Chapter
1, Apache Solr Configuration. This recipe shows how to set up a ZooKeeper cluster ready for
production use. However, if you already have ZooKeeper running, you can skip that recipe.

How to do it...
Let's assume we want to create a cluster that will have four Solr servers. We would also like
to have our data divided between four Solr servers in such a way that we would have the
original data sharded to two machines. In addition to this we would also have a copy of each
shard available, in case something happens with one of the Solr instances. I also assume that
we already have our ZooKeeper cluster setup, ready, and available at the 192.168.0.10
address on port 9983.

1.	 Let's start with populating our cluster configuration into the ZooKeeper cluster. In
order to do this, you need to run the following command:
java -Dbootstrap_confdir=./solr/collection1/conf -Dcollection.
configName=twoShardsTwoReplicasConf -DnumShards=2
-DzkHost=192.168.0.10:9983 -jar start.jar

2.	 Now that we have our configuration populated, let's start the second node with the
following command:
java -DzkHost=192.168.0.10:9983 -jar start.jar

3.	 We now have our two shards created and want to create replicas. This is very simple
since we have already created the configuration. We just need to start two additional
servers with the following command run on each of them:

java -DzkHost=192.168.0.10:9983 -jar start.jar

If you look at the cloud configuration of the Solr administration panel, you will see that you
have a cluster that has four nodes, where the first two nodes act as leaders for the shards
and the other two nodes act as their replicas. You can start indexing your data to one of the
servers now, and Solr will take care of data distribution and will also automatically copy the
data to the replicas. Let's see how this works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

213

How it works...
What we need to do first is send all the configuration files to ZooKeeper in order for the Solr
servers to be able to fetch it from there. That's why, when running the first server (only during
the first start of it), we add the -Dboostrap_confdir and -Dcollection.configName
parameters. The first parameter specifies the location of the directory with the configuration
files that we would like to put into ZooKeeper. The second parameter specifies the name of
your configuration. During the first start, we also need to specify the number of shards that
should be available in our cluster, and in this example we set it to 2 (the -DnumShards
parameter). The -DzkHost parameter is used to tell Solr about the location and the port
used by the Zookeeper cluster.

As you can see, all the other commands are similar to the ones you used while running the
Solr instances. The only difference is that we specify one additional parameter, -DzkHost,
which tells Solr where to look for the ZooKeeper server on the cluster.

When setting up the SolrCloud cluster, please remember to choose the number of shards
wisely, because you can't change that for your existing cluster, at least not right now. You can
add replicas to an already created cluster, but the number of shards will remain constant.

There's more...
There is one more thing that I would like to mention – the possibility of running a ZooKeeper
server embedded into Apache Solr 4.0.

Starting the embedded ZooKeeper server
You can also start an embedded ZooKeeper server shipped with Solr for your test
environment. In order to do this, you should pass the -DzkRun parameter instead
of -DzkHost=192.168.0.10:9983, but only in the command that sends our
configuration to the ZooKeeper cluster. So the final command should look similar
to the following code snippet:

java -Dbootstrap_confdir=./solr/collection1/conf -Dcollection.configName
=twoShardsTwoReplicasConf -DzkHost=192.168.0.10:9983 -DnumShards=2 -jar
start.jar

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

214

Setting up two collections inside a single
cluster

Imagine that you would like to have more than a single collection inside the same Apache
Solr 4.0 cluster. For example, you would like to store books in one collection and users in
the second one. SolrCloud allows that, and this recipe will show you how to do it.

Getting ready
Before continuing, I advise you to read the Installing standalone ZooKeeper recipe in Chapter
1, Apache Solr Configuration, because this recipe assumes that we already have ZooKeeper up
and running. We assume that ZooKeeper is running on localhost and is listening on port 2181.

How to do it...
1.	 Since we want to start a new SolrCloud cluster that doesn't have any collections

defined, we should start with the solr.xml file. On both instances of Solr, the
solr.xml file should look similar to the following code snippet:
<?xml version="1.0" encoding="UTF-8" ?>
<solr persistent="true">
 <cores adminPath="/admin/cores"
 defaultCoreName="collection1" host="${host:}"
 hostPort="${jetty.port:}"
 hostContext="${hostContext:}"
 zkClientTimeout="${zkClientTimeout:15000}">
 </cores>
</solr>

2.	 Let's assume that we have two SolrCloud instances that form a cluster, both running
on the same physical server, one on port 8983 and the second one on 9983. They
are started with the following commands:
java -Djetty.port=8983 -DzkHost=localhost:2181 -jar start.jar

java -Djetty.port=9983 -DzkHost=localhost:2181 -jar start.jar

3.	 Now, we need to add the configuration files, which we want to create collections with,
to ZooKeeper. Let's assume that we have all the configuration files stored in /usr/
share/config/books/conf for the books collection, and the configuration files for
the users collection stored in /usr/share/config/users/conf. To send these files
to ZooKeeper, we should run the following commands from our $SOLR_HOME directory:
cloud-scripts/zkcli.sh -cmdupconfig -zkhost localhost:2181
-confdir /usr/share/config/books/conf -confnamebookscollection

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

215

And:

cloud-scripts/zkcli.sh -cmdupconfig -zkhost localhost:2181
-confdir /usr/share/config/users/conf -confnameuserscollection

4.	 We have pushed our configurations into the ZooKeeper, so we can now create the
collections we want. In order to do this, we use the following commands:
curl 'http://localhost:8983/solr/admin/collections?action=CREATE&n
ame=bookscollection&numShards=
2&replicationFactor=0'

And:

curl 'http://localhost:8983/solr/admin/collections?action=CREATE&n
ame=userscollection&numShards=
2&replicationFactor=0'

5.	 Now, just to test if everything went well, we will query the newly created collections
as follows:
curl 'http://localhost:8983/solr/bookscollection/select?q=*:*'

The response to the preceding command will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">39</int>
 <lst name="params">
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="0" start="0"
 maxScore="0.0">
 </result>
</response>

As you can see, Solr responded correctly. But as we don't have any data indexed,
we got 0 documents.

How it works...
As you can see, our solr.xml file on both the instances is the same and it doesn't contain
any information about the cores. This is done on purpose, since we want to have a clean
cluster – one without any collections present.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

216

The mentioned configuration directories should store all the files (solrconfig.xml,
schema.xml, and stopwords.txt) that are needed for your Solr instance to work, if you
use one. Please remember this before sending them to ZooKeeper or else Solr will fetch
those files from ZooKeeper and create collections using them.

Now, let's look at the most interesting aspect – the scripts used to upload the configuration
files to ZooKeeper. We used the zkcli.sh script provided with the standard Solr 4.0
distribution and placedit in the cloud-scripts directory by default. The first thing is the cmd
parameter, which specifies what we want to do – in this case upconfig means that we want
to upload the configuration files. The zkhost parameter allows us to specify the host and port
of the ZooKeeper instance we want to put the configuration to. confdir is one of the most
crucial parameters and it specifies the directory in which the Solr configuration files are stored
– the ones that should be sent to ZooKeeper (in our case, /usr/share/config/users/
conf and /usr/share/config/books/conf). Finally the last parameter, confname,
specifies the name of the collection we will use the configuration with.

The command in the fourth step lets us create the actual collection in the cluster. In order to do
this, we send a request to the /admin/collections handler, which uses the newly introduced
collections API. We tell Solr that we want to create a new collection (the action=CREATE
parameter) with the name of bookscollection (name=bookscollection). Please note that
the name specified in the name parameter is the same as the confname parameter value used
during configuration files upload. The last two parameters specify the number of shards and
replicas that the collection should be created with. The number of shards is the initial number of
cores that will be used to hold the data in the collection (numShards). The number of replicas
(replicationFactor) is the exact number of copies of the shards that can be distributed
among many servers, and may increase query throughput and reliability.

Managing your SolrCloud cluster
In addition to creating a new collection with the API exposed by SolrCloud, we are also allowed
to use two additional operations. The first is to delete our collection and the second one is
to reload the whole collection. Along with the ability to create new collections, we are able
to dynamically manage our cluster. This recipe will show you how to use the delete and
reload operations and where they can be useful.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

217

Getting ready
The content of this recipe is based on the Setting up two collections inside a single cluster
recipe in this chapter. Please read it before continuing.

How to do it...
I assume that we already have two collection deployed on our cluster –bookscollection
and userscollection – the same ones that we configured in the Setting up two
collections inside a single cluster recipe in this chapter. So our cluster view looks
similar to the following screenshot:

1.	 First, let's delete one of the collections – userscollection. To do this, we send the
following command:
curl 'http://localhost:8983/solr/admin/collections?action=DELETE&n
ame=userscollection'

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

218

2.	 Now, let's look at our cluster view once again:

As you can see, the userscollection collection was deleted.

3.	 Now, let's see how the reloading of collections works. In order to test it, let's
update the spellings.txt file located at /usr/share/config/books/conf
directory. The original file looks similar to the following code snippet:
pizza
history

After the update, it will look similar to the following code snippet:

after
update

4.	 Now, we need to update the collection configuration in ZooKeeper. To do this we
use the following command, which is run from our Solr instance's home directory:
cloud-scripts/zkcli.sh -cmdupconfig -zkhost localhost:2181
-confdir /usr/share/config/books/conf -confnamebookscollection

5.	 Now that we have the updated version of our configuration files to
bookscollection in ZooKeeper, we can send the reload command to Solr:
curl 'http://localhost:8983/solr/admin/collections?action=RELOAD&n
ame=bookscollection'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

219

6.	 First, let's check if the Solr administration panel sees the changes in ZooKeeper.
To do this, we'll use the tree view of the cloud section and navigate to /configs/
bookscollection/spellings.txt. We should be able to see something similar
to the following screenshot:

7.	 In the final check, let's see if Solr itself sees the update. In order to do this we run the
following command:

curl 'http://localhost:8983/solr/bookscollection/admin/
file?file=spellings.txt'

The response of the preceding command would be as follows:

after
update

So it seems like everything is working as it should. Now let's see how it works.

How it works...
We begin with a cluster that contains two collections. But we want to delete one of them and
update the second one. In order to do this we use the collections API provided by Solr 4.0.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

220

We start by sending the delete action (action=DELETE) to the /solr/admin/
collections URL, which is the default address that the collections API is available at.
In addition to this, we need to provide the name of the collection we want to delete – to do
this, we use the name parameter with the name of the collection that we want to delete. After
sending the command and refreshing the Solr administration panel, we see that the second
collection was deleted just as we wanted.

Now, let's discuss the process of updating the second collection. First of all, we've changed
the contents of the spellings.txt file in order to see how it works. However, be careful
when updating collections, because some changes may force you to re-index your data; but
let's get back to our update. So after we update the file, we use one of the scripts provided
with Solr 4.0 in order to upload all the configuration files that belong to this collection into the
ZooKeeper ensemble (if you are not familiar with that command, please see the Setting up
two collections inside a single cluster recipe, later in this chapter). Now, we needed to tell Solr
to reload our collection by sending the reload command (action=RELOAD) to the same
URL as the delete command. Of course, just like with the delete command, we needed to
provide the name of the collection we want to reload using the name parameter.

As you can see, on the previous screenshot, the collection was updated at least in the
ZooKeeper ensemble. However, we want to be sure that Solr sees those changes, so we use
the /admin/file handler to get the contents of the spellings.txt file. In order to do this,
we pass the file=spellings.txt parameter to that handler. As you can see, Solr returned
the changed contents, so the collection was updated and reloaded successfully.

Understanding the SolrCloud cluster
administration GUI

With the release of Solr 4.0, we've got the ability to use a fully-distributed Solr cluster
with fully-distributed indexing and searching. Along with this comes the reworked Solr
administration panel with parts concentrated on Cloud functionalities. This recipe will
show you how to use this part of the administration panel; for example, how to see your
cluster distribution and detailed information about shards and replicas.

Getting ready
This recipe assumes that the SolrCloud cluster is up and running. If you are not familiar with
setting up the SolrCloud cluster, please refer to the Creating a new SolrCloud cluster recipe
in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

221

How to do it...
1.	 First of all, let's see how we can check how our cluster distribution looks. In order

to do this, let's open our web browser to http://localhost:8983/solr/ (or
the address of the host and port of any of the Solr instances that form the cluster)
and open the Cloud graph view. We should be able to see something similar to the
following screenshot:

2.	 There is also a second view of the same information that can be accessed by viewing
the Graph (Radial) section, and it should look similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

222

3.	 Looks nice, doesn't it? However, there is some additional information that can be
retrieved. So now, let's look at the Tree section of the Cloud administration panel:

As you can see, there is some very detailed information available. So now, let's look at what
it means.

How it works...
First of all, remember that the best way to get used to the new administration panel is to just
run a simple SolrCloud cluster by yourself and play with it. However, let's look at the provided
examples to see what information we have there.

As you can see, in the first two screenshots provided, our cluster consists of a single collection
named collection1. It consists of two shards (shard1 and shard2) and each shard
lives on a single node. One of each shards is the primary one (the ones at gr0-vaio:8983
and gr0-vaio:7983), and each of them has a replica (the ones at gr0-vaio:6983 and
gr0-vaio:5983). Both diagrams shown in the screenshots provide the same amount of
information and they only differ in the way they present the data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

223

Now, let's look and discuss the last screenshot – the Tree view of the Cloud section of the
Solr administration panel. As you can see, there is much more information available there.
The tree presented in the administration panel is what your ZooKeeper ensemble sees.
The first thing is clusterstate.json, which holds detailed information about the current
state of the cluster.

Next, you can see the collections section, which holds information about each collection
deployed in the cluster – you can see the information about each shard and its replicas, such
as leaders, and some detailed information needed by the Solr and ZooKeeper.

In addition to the preceding information, you can also see the configuration files
(the /configs section) that were sent to the ZooKeeper and are used as the
configuration files for your collection or collections.

Not visible in the screenshot is the additional information connected to ZooKeeper,
which is not needed during the usual work with Solr, so I decided to omit discussing it.

Distributed indexing and searching
Having a distributed SolrCloud cluster is very useful; you can have multiple shards and replicas,
which are automatically handled by Solr itself. This means that your data will be automatically
distributed among shards and replicated between replicas. However, if you have your data
spread among multiple shards, you probably want them to be queried while you send the
query. With earlier versions of Solr before 4.0, you had to manually specify the list of shards
that should be queried. Now you don't need to do that, and this recipe will show you how to
make your queries distributed.

Getting ready
If you are not familiar with setting up the SolrCloud cluster, please refer to the Creating a new
SolrCloud cluster recipe in this chapter. If you are not familiar with how to modify the returned
documents using the fl parameter, please read the Modifying returned documents recipe in
Chapter 4, Querying Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

224

How to do it...
1.	 First of all, let's assume we have a cluster that consist of three nodes and we have

a single collection deployed on that cluster; a collection with three shards. For the
purpose of this recipe, I'm using the example configuration files provided with Solr
and the example documents stored in the XML files in the exampledocs directory
of the Solr distribution package. If we look at the Solr administration panel, this is
what the Cloud graph will show:

2.	 Now, the best thing about distributed indexing and searching—if you are using Solr
4.0 and its distributed searching and indexing capabilities—is that you don't need to
do anything in addition to sending the proper indexing and searching requests to one
of the shards. So, in order to have the example files indexed, I've run the following
command from the exampledocs directory of the Solr instance running on port 8983:
java -jar post.jar *.xml

3.	 Now, let's use the non-distributed queries to check if the documents were sent to all
the shards. In order to do this, we run three queries. The first query is run to the Solr
instance holding the first shard:
curl 'http://localhost:8983/solr/select?q=*:*&rows=0&distrib=false'

Its response will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

225

 <str name="distrib">false</str>
 <str name="q">*:*</str>
 <str name="rows">0</str>
 </lst>
 </lst>
 <result name="response" numFound="8" start="0">
 </result>
</response>

4.	 The second query is run to the Solr instance holding the second shard:
curl 'http://localhost:7983/solr/select?q=*:*&rows=0&distrib=false'

Its response will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="distrib">false</str>
 <str name="q">*:*</str>
 <str name="rows">0</str>
 </lst>
 </lst>
 <result name="response" numFound="10" start="0">
 </result>
</response>

5.	 The third query is run to the Solr instance holding the last shard:
curl 'http://localhost:6983/solr/select?q=*:*&rows=0&distrib=false'

Its response will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="distrib">false</str>
 <str name="q">*:*</str>
 <str name="rows">0</str>
 </lst>
 </lst>
 <result name="response" numFound="14" start="0">
 </result>
</response>

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

226

6.	 Everything seems to be in the perfect order now, at least by judging the number of
documents. So now, let's run the default distributed query to see if all the shards
were queried. In order to do this we run the following query:

curl 'http://localhost:8983/solr/select?q=*:*&fl=id,[shard]&ro
ws=50'

Since the response was quite big, I decided to cut it a bit and show only a single
document from each shard:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">58</int>
 <lst name="params">
 <str name="fl">id,[shard]</str>
 <str name="q">*:*</str>
 <str name="rows">50</str>
 </lst>
 </lst>
 <result name="response" numFound="32" start="0"
 maxScore="1.0">
 <doc>
 <str name="id">SP2514N</str>
 <str name="[shard]">gr0-vaio:6983/solr/collection1/
 </str>
 </doc>
 ...
 <doc>
 <str name="id">GB18030TEST</str>
 <str name="[shard]">gr0-vaio:7983/solr/collection1/
 </str>
 </doc>
 ...
 <doc>
 <str name="id">IW-02</str>
 <str name="[shard]">gr0-vaio:8983/solr/collection1/
 </str>
 </doc>
 ...
 </result>
</response>

As you can see, we got documents from each shard that builds our cluster, so it works as
intended. Now, let's look at exactly how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

227

How it works...
As you can see, as shown in the previous screenshot, our test cluster created for the purpose
of this recipe contains thee Solr instances, where each of them contains a single shard of the
collection deployed on the cluster. This means that the data indexed to any of the shards will
be automatically divided and distributed among the shards. In order to choose which shard
the document should go to, Solr uses a hash value of the identifier of the document.

During indexing, we sent the documents to the Solr instance that is working on port
8983. However, as our example queries show, when querying only a particular shard (the
distrib=false parameter), each of them hosts different amount of documents, which
is expected. If we had many more documents, the amount of documents on each shard
would be probably almost the same if not equal. As you must have guessed by now, the
distrib=false parameter forces the query to be run on the Solr server that it was sent
to in a non-distributed manner, and we want such behavior to see how many documents
are hosted on each of the shards.

Let's now focus on the query that was used to fetch all the documents in the cluster. It's a
query that you are probably used to – fetching all the documents (q=*:*) and returning a
maximum of 50 documents (rows=50). In addition, we specify the fl parameter in such a
way that the returned document contains the id field and the information about the shard
the document was fetched from (fl=id,[shard]). As you can see, we got documents
coming from all the shards that build the collection in the response. This is because when
using the SolrCloud deployment, Solr automatically queries all the relevant shards that are
needed to be queried in order to query the whole collection. The information about shards
(and replicas, if they exist) is fetched from ZooKeeper, so we don't need to specify it.

Increasing the number of replicas on an
already live cluster

If you used Solr before the release of the 4.0 version, you are probably familiar with replication.
The way deployments usually worked is that there was a single master server and multiple slave
servers that were pulling the index from the master server. In Solr 4.0, we don't have to worry
about replication and pulling interval – it's done automatically. We can also set up our instances
in a way to achieve a similar setup as that of multiple replicas of a single shard where data is
stored. This recipe will show you how to do it.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

228

Getting ready
If you are not familiar with setting up a SolrCloud cluster, please refer to the Creating a new
SolrCloud cluster recipe in this chapter.

How to do it...
For the purpose of this recipe, I'll assume that we want to have a cluster with a single shard
running just like the usual Solr deployment, and we want to add two additional replicas to that
shard. So, we have more servers to handle the queries.

1.	 The first step is starting a new Solr 4.0 server. We will use the configuration provided
with the example Solr server, but you can use your own if you want. We will also use
the ZooKeeper server embedded into Solr, but again, you can use the standalone one.
So finally, the command that we use for starting the first instance of Solr is as follows:
java -Dbootstrap_confdir=solr/collection1/conf -Dcollection.
configName=collection1 -DzkRun -DnumShards=1 -jar start.jar

2.	 Now, let's take a look at the Solr administration panel to see how our cluster
state looks:

As you can see, we have a single shard in our collection that has a single replica. This
can be a bit misleading, because the single replica is actually the initial shard we've
created. So we actually have a single shard and zero copies of it. As we said earlier,
we want to change that in order to have two additional replicas of our shard. In order
to do this, we need to run two additional Solr instances. I'll run them on the same
machine as the first one on ports 7893 and 6893. But in a real life situation, you'd
probably want to have them on different servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

229

3.	 In order to run these two additional Solr servers, we use the following commands:
java -Djetty.port=7983 -DzkHost=localhost:9983 -jar start.jar

java -Djetty.port=6983 -DzkHost=localhost:9983 -jar start.jar

4.	 Now, let's see how our cluster state changes, by looking at the cluster state in
the Solr administration panel again. The cluster state information looks similar
to the following screenshot after we start the two additional instances of Solr:

As you see, we still have our initial shard. But right now, we also have two additional replicas
present that will be automatically updated and will hold the same data as the primary shard
that we created in the beginning.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

230

How it works...
We start our single shard instance with the command that allows us to run the embedded
ZooKeeper server along with Solr. The embedded ZooKeeper server is started at the port
whose number is the Solr port + 1000, which in our case if 9983. bootstrap_confdir
specifies the directory where the Solr configuration files are stored, which will be sent to the
ZooKeeper. collection.configName specifies the name of the collection, numShards
specifies the amount of shards the collection should have, and zkRun tells Solr that we want
the embedded ZooKeeper to be run. Of course, this was only used as an example, and in a
production environment you should set up a standalone ZooKeeper server.

As shown in the previous screenshot, you can see that our collection consists of a single
shard and the only replica we have is this shard. So, we have a single primary shard with
no data replication at all. In order to create two replicas that will be automatically populated
with exactly the same data as the primary shard, we just need to start the two additional Solr
servers. For the purpose of the recipe, we started these new instances on the same machine,
but usually in a production environment you would set them up on separate machines.

As you can see in the second screenshot, after adding these two new Solr instances, our
cluster is composed of a primary shard and two replicas, which will have their contents
updated automatically. So we've got what we wanted.

Stopping automatic document distribution
among shards

In most cases, the standard distribution of documents between your SolrCloud instances
will be enough, and what's more, it will be the right way to go. However, there are situations
where controlling the documents distribution outside of Solr (that is, in your application) may
be better. For example, imagine that you'll only allow your users to search in the data they
indexed. In such situations, it would be good to have documents for a single client stored in a
single shard (if that's possible). In such cases, automatic documents distribution based on the
documents identifier may not be the best way. Solr allows us to turn off automatic document
distribution and this recipe will show you how to do that.

Getting ready
If you are not familiar with setting up the SolrCloud cluster, please refer to the Creating a new
SolrCloud cluster recipe in this chapter. If you are not familiar with how to modify the returned
documents using the fl parameter, please read the Modifying the returned documents recipe
in Chapter 4, Querying Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

231

How to do it...
1.	 Let's assume that we have the following index structure (schema.xml) defined,

and that we already have it stored in ZooKeeper:
<fields>
 <field name="id" type="string" indexed="true"
 stored="true" required="true" />
 <field name="userName" type="string" indexed="true"
 stored="true" />
 <field name="data" type="text" indexed="true"
 stored="true" />
 <field name="_version_" type="long" indexed="true"
 stored="true"/>
</fields>

2.	 We have two files that contain user data. One is called data1.xml, and it holds the
data for user1 and looks similar to the following code snippet:
<add>
 <doc>
 <field name="id">1</field>
 <field name="userName">user1</field>
 <field name="data">Data of user1</field>
 </doc>
</add>

The second one is called data2.xml, and it holds the data for user2:

<add>
 <doc>
 <field name="id">2</field>
 <field name="userName">user2</field>
 <field name="data">Data of user2</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="userName">user2</field>
 <field name="data">Another data of user2</field>
 </doc>
</add>

3.	 In order to be able to stop the automatic document distribution between shards,
we need the following update request processor chain to be defined in the
solrconfig.xml file:
<updateRequestProcessorChain>
 <processor class="solr.LogUpdateProcessorFactory" />

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

232

 <processor class="solr.RunUpdateProcessorFactory" />
 <processor class="
 solr.NoOpDistributingUpdateProcessorFactory" />
</updateRequestProcessorChain>

4.	 I assume that we already have a cluster containing at least two nodes up and
running, these nodes use the preceding configuration files, and that our collection
name is collection1. One of the nodes is running on a server with the IP address
as 192.168.1.1 and the second one is running on a server with the IP address as
192.168.1.2.

5.	 As we discussed earlier, we want to manually distribute the data to Solr instances.
In our case, we would like the data from the data1.xml file to be indexed on the Solr
server running at 192.168.1.1, and the data from data2.xml to be indexed on the
Solr instance running on 192.168.1.2. So, we use the following commands to index
the data:
java -Durl=http://192.168.1.1:8983/solr/collection1/update -jar
post.jar data1.xml

java -Durl=http://192.168.1.2:8983/solr/collection1/update -jar
post.jar data2.xml

6.	 Now, let's test if it works. In order to do this, we will use the Solr functionality that
enables us to see which shard the document is stored at. In our case, it will be the
following query:

curl http://localhost:7983/solr/select?q=*:*&fl=*,[shard]

The response will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">24</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="fl">*,[shard]</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0"
 maxScore="1.0">
 <doc>
 <str name="id">2</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

233

 <str name="userName">user2</str>
 <str name="data">Data of user2</str>
 <str name="[shard]">
 192.168.1.2:8983/solr/collection1/
 </str>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="userName">user2</str>
 <str name="data">Another data of user2</str>
 <str name="[shard]">
 192.168.1.2:8983/solr/collection1/
 </str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="userName">user1</str>
 <str name="data">Data of user1</str>
 <str name="[shard]">
 192.168.1.1:8983/solr/collection1/
 </str>
 </doc>
 </result>
 </response>

It seems that we have achieved what we wanted, so let's see how it works.

How it works...
Our schema.xml file is very simple. It contains three fields that are used by our data
files at the _version_ field used internally by Solr. The actual data is nothing new
as well, so I'll skip discussing it.

The thing we want to look at is the update request processor chain definition.
As you can see, apart from the standard solr.LogUpdateProcessorFactory
and solr.RunUpdateProcessorFactory processors, it contains a solr.
NoOpDistributingUpdateProcessorFactory processor. You can think
of this additional processor as the one that forces the update command to
be indexed on the node it was sent to.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Cloud

234

We used the standard post.jar library distributed with Solr in order to index the data. In
order to specify which server the data should be sent to, we use the –Durl parameter. We
use two available servers to send the data to – the one running at 192.168.1.1 that should
contain one document after indexing, and the one running at 192.168.1.2 that should
contain two documents. In order to check this, we use a query that returns all the documents
(q=*:*). In addition, we specify the fl parameter in such a way that the returned document
contains not only all the stored fields, but also the shard the document was fetched from
(fl=*,[shard]).

As you can see, in the results returned by Solr, the documents that belong to user2 (the ones
with id field equal to 2 and 3) were fetched from the Solr server running at 192.168.1.2
(<str name="[shard]">192.168.1.2:8983/solr/collection1/</str>), and
the one belonging to user1 came from the Solr instance running at 192.168.1.1 (<str
name="[shard]">192.168.1.1:8983/solr/collection1/</str>). So, everything
is just as we wanted it to be.

One more thing: please remember that when turning off automatic documents distribution,
you may end up with shards being uneven. This is because of the different number of
documents being stored in each of them. So, you have to carefully plan your distribution.

www.it-ebooks.info

http://www.it-ebooks.info/

8
Using Additional Solr

Functionalities

In this chapter we will cover:

ff Getting more documents similar to those returned in the results list

ff Highlighting matched words

ff How to highlight long text fields and get good performance

ff Sorting results by a function value

ff Searching words by how they sound

ff Ignoring defined words

ff Computing statistics for the search results

ff Checking the user's spelling mistakes

ff Using field values to group results

ff Using queries to group results

ff Using function queries to group results

Introduction
There are many features of Solr that we don't use every day. You may not encounter
highlighting words, ignoring words, or statistics computation in everyday use, but they
can come in handy in many situations. In this chapter, I'll try to show how to overcome
some typical problems that can be fixed by using some of the Solr functionalities. In
addition to that we will see how to use the Solr grouping mechanism in order to get
documents that have some fields in common.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

236

Getting more documents similar to those
returned in the results list

Imagine a situation where you want to show similar documents to those returned by Solr. Let's
imagine a situation where you have an e-commerce library shop, and you want to show users
the books similar to the ones they found while using your application. This recipe will show you
how to do that.

How to do it...
1.	 Let's start with the following index structure (just add this to your schema.xml file,

to the field section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true"
termVectors="true" />

2.	 Next, let's use the following test data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook first edition</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Solr Cookbook second edition</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Solr by example first edition</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">My book second edition</field>
 </doc>
</add>

3.	 Let's assume that our hypothetical user wants to find books that have cookbook and
second in their names. But, we also want to show him/her similar books. To do that
we send the following query:

http://localhost:8983/solr/select?q=cookbook+second&mm=2&qf=name&d
efType=edismax&mlt=true&mlt.fl=name&mlt.mintf=1&mlt.mindf=1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

237

The results returned by Solr for the preceding query are as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="mm">2</str>
 <str name="mlt.mindf">1</str>
 <str name="mlt.fl">name</str>
 <str name="q">cookbook second</str>
 <str name="mlt.mintf">1</str>
 <str name="qf">name</str>
 <str name="mlt">true</str>
 <str name="defType">edismax</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Solr Cookbook second edition</str>
 <long name="_version_">1415606105364496384</long>
 </doc>
 </result>
 <lst name="moreLikeThis">
 <result name="2" numFound="3" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr Cookbook first edition</str>
 <long name="_version_">1415606105279561728</long>
 </doc>
 <doc>
 <str name="id">4</str>
 <str name="name">My book second edition</str>
 <long name="_version_">1415606105366593536</long>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Solr by example first edition</str>
 <long name="_version_">1415606105365544960</long>
 </doc>
 </result>
 </lst>
 </response>

Now let's see how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

238

How it works...
As you can see the index structure and the data are really simple. One thing to note is the
termVectors attribute set to true in the name field definition. It is a good thing to have
when using the more like this component, and should be used whenever possible in
the fields on which we plan to use this component.

Now let's take a look at the query. As you can see, we added some additional parameters
besides the standard q one (and the ones such as mm and defType which specify how our
query should be handled). The parameter mlt=true says that we want to add the more
like this component to the result processing. The mlt.fl parameter specifies which
fields we want to use with the more like this component. In our case we will use the
name field. The mlt.mintf parameter asks Solr to ignore terms from the source document
(the ones from the original result list) with the term frequency below the given value. In our
case we don't want to include the terms that will have a frequency lower than 1. The last
parameter, mlt.mindf, tells Solr that words appearing less than the value of the parameter
documents should be ignored. In our case we want to consider words that appear in at least
one document.

Last is the search results. As you can see, there is an additional section (<lst
name="moreLikeThis">) that is responsible for showing us the more like this
component results. For each document in the results there is one more like this section
added to the response. In our case, Solr added a section for the document with the unique
identifier 3 (<result name="3" numFound="3" start="0">), and there were three
similar documents found. The value of the id attribute is assigned the value of the unique
identifier of the document for which the similar documents are calculated for.

Highlighting matched words
Imagine a situation where you want to show your users which words were matched in the
document shown in the results list. For example, you want to show which words in the book
name were matched and display that to the user. Do you have to store the documents and
do the matching on the application side? The answer is no. We can force Solr to do that for
us and this recipe will show you how to do that.

How to do it...
1.	 We begin by creating the following index structure (just add this to your schema.xml

file, to the field section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

239

2.	 Our test data looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook first edition</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Solr Cookbook second edition</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Solr by example first edition</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">My book second edition</field>
 </doc>
</add>

3.	 Let's assume that our user is searching for the word book. To tell Solr that we want
to highlight the matches, we send the following query:

http://localhost:8983/solr/select?q=name:book&hl=true

The response from Solr should be as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="hl">true</str>
 <str name="q">name:book</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">4</str>
 <str name="name">My book second edition</str>
 </doc>
 </result>

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

240

 <lst name="highlighting">
 <lst name="4">
 <arr name="name">
 <str>My book second edition</str>
 </arr>
 </lst>
 </lst>
 </response>

As you can see, besides the normal results list we got the highlighting results (the highlighting
results are grouped by the <lst name="highlighting"> XML tag). The word book is
surrounded by the and HTML tags. So everything is working as intended. Now
let's see how it works.

How it works...
As you can see the index structure and the data are really simple, so I'll skip discussing this
part of the recipe. Please note that in order to use the highlighting mechanism, your fields
should be stored and not analysed by aggressive filters (such as stemming). Otherwise the
highlighting results can be misleading to the users. Let's think of a simple example of such
behavior – imagine the user types the word bought in the search but Solr highlighted the
word buy because of the stemming algorithm.

The query is also not complicated. We can see the standard q parameter that passes the
query to Solr. But there is also one additional parameter, the hl parameter set to true.
This parameter tells Solr to include the highlighting component results to the results list.
As you can see in the results list, in addition to the standard results, there is a new section
<lst name="highlighting">, which contains the highlighting results. For every
document, in our case the only one found (<lst name="4"> means that the highlighting
result is presented for the document with the unique identifier value of 4), there is a list
of fields that contain the sample data with the matched words (or words) highlighted.
By highlighted I mean surrounded by the HTML tag, in this case the tag.

You should also remember one other thing: if you are using the standard LuceneQParser
query parser then the default field used for highlighting will be the one set in the schema.
xml file. If you are using DismaxQParser then the default fields used for highlighting are
the ones specified by the qf parameter.

There's more...
There are a few things that can be useful when using the highlighting mechanism.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

241

Specifying the fields for highlighting
In many real life situations we want to decide what fields we would want to show the
highlighting for. To do that, you must add an additional parameter – hl.fl with the list
of fields separated by the comma character. For example, if we would like to show the
highlighting for the fields name and description, our query should look as follows:

http://localhost:8983/solr/select?q=name:book&hl=true&hl.
fl=name,description

Changing the default HTML tags that surround the matched word
There are situations where you would like to change the default and HTML tags
to the ones of your choice. To do that you should add the hl.simple.pre and hl.simple.
post parameters. The first one specifies the prefix that will be added in front of the matched
word and the second one specifies the postfix that will be added after the matched word. For
example, if you would like to surround the matched word with the and HTML tags
the query would look like this:

http://localhost:8983/solr/select?q=name:book&hl=true&hl.simple.
pre=&hl.simple.post=

How to highlight long text fields and get
good performance

In certain situations, the standard highlighting mechanism may not be performing as well as
you would like it to be. For example, you may have long text fields and you want the highlighting
mechanism to work with them. This recipe will show you how to do that.

How to do it...
1.	 We begin the index structure configuration which looks as follows (just add this

to your schema.xml file, to the field section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true"
termVectors="true" termPositions="true" termOffsets="true" />

2.	 The next step is to index the data. We will use the test data which looks like the
following code:
<add>
 <doc>
 <field name="id">1</field>

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

242

 <field name="name">Solr Cookbook first edition</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Solr Cookbook second edition</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Solr by example first edition</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">My book second edition</field>
 </doc>
</add>

3.	 Let's assume that our user is searching for the word book. To tell Solr that we
want to highlight the matches, we send the following query:
http://localhost:8983/solr/select?q=name:book&hl=true&hl.
useFastVectorHighlighter=true

The response from Solr should be as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">15</int>
 <lst name="params">
 <str name="hl">true</str>
 <str name="q">name:book</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">4</str>
 <str name="name">My book second edition</str>
 </doc>
 </result>
 <lst name="highlighting">
 <lst name="4">
 <arr name="name">
 <str>My book second edition</str>
 </arr>
 </lst>
 </lst>
 </response>

As you can see everything is working as intended. Now let's see how.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

243

How it works...
As you can see the index structure and the data are really simple, but there is a difference
between using the standard highlighter and the new FastVectorHighlighting feature.
To be able to use the new highlighting mechanism, you need to store the information about
term vectors, position, and offsets. This is done by adding the following attributes to the
field definition or to the type definition: termVectors="true" termPositions="true"
termOffsets="true".

Please note that in order to use the highlighting mechanism, your fields should be stored and
not analysed by aggressive filters (such as stemming). Otherwise the highlighting results can
be misleading to the users. An example of such a behavior is simple – imagine that the user
types the word bought in the search box but Solr highlighted the word buy because of the
stemming algorithm.

The query is also not complicated. We can see the standard q parameter that passes the
query to Solr. But there is also one additional parameter, the hl parameter set to true.
This parameter tells Solr to include the highlighting component results to the results list.
In addition we add the parameter to tell Solr to use the FastVectorHighlighting
feature: hl.useFastVectorHighlighter=true.

As you can see in the results list, in addition to the standard results, there is a new section
called <lst name="highlighting"> that contains the highlighting results. For every
document, in our case the only one found (<lst name="4"> means that the highlighting
result is presented for the document with the unique identifier value of 4), there is a list
of fields that contain the sample data with the matched words (or words) highlighted.
By highlighted I mean surrounded by the HTML tag, in this case the tag.

Sorting results by a function value
Let's imagine that you have an application that allows the user to search through the
companies that are stored in the index. You would like to add an additional feature to your
application to sort the results on the basis of the distance of a certain geographical point.
Is this possible with Solr? Yes, and this recipe will show you how to do that.

Getting ready
The following recipe uses spatial search. If you are not familiar with geographical search in
Solr please read the Storing geographical points in the index recipe in Chapter 3, Analyzing
Your Text Data.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

244

How to do it...
1.	 Let's start with the following index structure (just add this to your schema.xml file,

to the field section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="geo" type="location" indexed="true" stored="true" />
<dynamicField name="*_coordinate" type="tdouble" indexed="true"
stored="false" />

2.	 Our test data that we want to index looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Company one</field>
 <field name="geo">10.1,10.1</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Company two</field>
 <field name="geo">11.1,11.1</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Company three</field>
 <field name="geo">12.2,12.2</field>
 </doc>
</add>

3.	 In addition to that we also need to define the following field type in the schema.xml
file in the types section:
<fieldType name="location" class="solr.LatLonType"
subFieldSuffix="_coordinate"/>

4.	 Let's assume that our hypothetical user searches for the word company and the user
is in the location with the geographical point of(13, 13). So, in order to show the
results of the query and sort them by the distance from the given point, we send the
following query to Solr:
http://localhost:8983/solr/select?q=name:company&sort=geodist(geo,
13,13)+asc

The results list returned by the query is as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

245

 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="q">name:company</str>
 <str name="sort">geodist(geo,13,13) asc</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">3</str>
 <str name="name">Company three</str>
 <str name="geo">12.2,12.2</str>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Company two</str>
 <str name="geo">11.1,11.1</str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Company one</str>
 <str name="geo">10.1,10.1</str>
 </doc>
 </result>
 </response>

As you can see, everything is working as it should be. So now let's see exactly how this works.

How it works...
Let's start from the index structure. We have four fields – one for holding the unique
identifier (the id field), one for holding the name of the company (the name field), and
one field responsible for the geographical location of the company (the geo field). The
last field, the dynamic one, is needed for the location type to work. The data is pretty
simple so let's just skip discussing that.

Besides the standard q parameter responsible for the user query, you can see the sort
parameter. But the sort is a bit different from the ones you are probably used to. It uses the
geodist function to calculate the distance from the given point, and the value returned by
the function is then used to sort the documents in the results list. The first argument of the
geodist function (the geo value) tells Solr which field to use to calculate the distance. The
next two arguments specify the point from which the distance should be calculated. Of course
as with every sort we specify the order in which we want the sort to take place. In our case we
want to sort from the nearest to the furthest company (the asc value).

As you can see in the results, the documents were sorted as they should be.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

246

Searching words by how they sound
One day your boss comes to your office and says "Hey, I want our search engine to be able to
find the same documents when I enter phone or fone into the search box". You tried to say
something, but your boss is already at the other side of the door to your office. So, you wonder
if this kind of functionality is available in Solr. I think you already know the answer – yes it is,
and this recipe will show you how to configure it and use with Solr.

How to do it...
1.	 We start with the following index structure (just add this to your schema.xml file,

to the field section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="phonetic" indexed="true" stored="true" />

2.	 Next we define the phonetic type, which looks like the following code (paste it into
the schema.xml file):
<fieldtype name="phonetic" stored="false" indexed="true"
class="solr.TextField" >
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.DoubleMetaphoneFilterFactory" inject="false"/>
 </analyzer>
</fieldtype>

3.	 Now we need to index our test data, which looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Phone</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Fone</field>
 </doc>
</add>

4.	 Now let's assume that our user wants to find documents that have the word that
sounds like fon. So, we send the following query to Solr:
http://localhost:8983/solr/select?q=name:fon

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

247

The result list returned by the query is as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">name:fon</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Phone</str>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Fone</str>
 </doc>
 </result>
 </response>

So, the filter worked! We got two documents in the results list. Now let's see how it worked.

How it works...
Let's start with the index structure. As you can see we have two fields, the id field responsible
for holding the unique identifier of the product and the name field responsible for holding the
name of the product.

The name field is the one that will be used for phonetic search. For that we defined a new
field type named phonetic. Besides the standard parts (such as class among many
others) we defined a new filter: DoubleMetaphoneFilterFactory. It is responsible
for analysis and checking how the words sound. This filter uses an algorithm named double
metaphone to analyse the phonetics of the words. The additional attribute inject="false"
tells Solr to replace the existing tokens instead of inserting additional ones, which mean that
the original tokens will be replaced by the ones that the filter produces.

As you can see from the query and the data, the fon word was matched to the word phone
and also to the word fone, which means that the algorithm (and thus the filter) works quite
well. But take into consideration that this is only an algorithm, so some words that you think
should be matched will not match.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

248

See also
If you would like to know other phonetic algorithms, please take a look at the Solr Wiki page
that can be found at the following URL address: http://wiki.apache.org/solr/
AnalyzersTokenizersTokenFilters.

Ignoring defined words
Imagine a situation where you would like to filter the words that are considered vulgar from
the data we are indexing. Of course, by accident, such words can be found in your data and
you don't want them to be searchable thus you want to ignore them. Can we do that with Solr?
Of course we can, and this recipe will show you how to do that.

How to do it...
1.	 Let's start with the following index structure (just add this to your schema.xml file,

to the field section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_ignored" indexed="true"
stored="true" />

2.	 The second step is to define the text_ignored type, which looks like the following
code:
<fieldType name="text_ignored" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
 words="ignored.txt" enablePositionIncrements="true" />
 </analyzer>
</fieldType>

3.	 Now we create the ignored.txt file, whose contents looks as follows:
vulgar
vulgar2
vulgar3

4.	 The next step is to index our test data, which looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Company name</field>
 </doc>
</add>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

249

5.	 Now let's assume that our user wants to find the documents that have the words
Company and vulgar. So, we send the following query to Solr:
http://localhost:8983/solr/select?q=name:(Company+AND+vulgar)

In the standard situation there shouldn't be any results because we don't have
a document that matches the two given words. But let's look at what Solr returned
to us as the preceding query's result:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">name:(Company AND vulgar)</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Company name</str>
 </doc>
 </result>
 </response>

6.	 Hmm… it works. To be perfectly sure, let's look at the analysis page found at the
administration interface, as shown in the following screenshot:

As you can see the word vulgar was cut and thus ignored.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

250

How it works...
Let's start with the index structure. As you can see we have two fields, the id field responsible
for holding the unique identifier of the product and the name field responsible for holding the
name of the product.

The name field is the one we will use to mention the ignoring functionalities of Solr –
StopFilterFactory. As you can see the text_ignored type definition is analysed
the same way both in the query and index time. The unusual thing is the new filter –
StopFilterFactory. The words attribute of the filter definition specifies the name of the file,
encoded in UTF-8, which consists of words (a new word at every file line) that should be ignored.
The defined file should be placed in the same directory in which we placed the schema.xml file.
The ignoreCase attribute set to true tells the filter to ignore the case of the tokens and the
words defined in the file. The last attribute, enablePositionIncrements=true, tells Solr to
increment the position of the tokens in the token stream. The enablePositionIncrements
parameter should be set to true if you want to preserve the next token after the discarded one
to increment its position in the token stream.

As you can see in the query, our hypothetical user queried Solr for two words with the logical
operator AND, which means that both words must be present in the document. But, the filter
we added cut the word vulgar and thus the results list consists of the document that has
only one of the words. The same situation occurs when you are indexing your data. The words
defined in the ignored.txt file will not be indexed.

If you look at the provided screenshot from the analysis page of the Solr administration
interface (refer to step 6 of the How to do it... section), you can see that the word vulgar
was cut during the processing of the token stream in the StopFilterFactory filter.

Computing statistics for the search results
Imagine a situation where you want to compute some basic statistics about the documents
in the results list. For example, you have an e-commerce shop where you want to show the
minimum and the maximum price of the documents that were found for a given query. Of course
you could fetch all the documents and count them by yourself, but imagine Solr doing it for you.
Yes, it can! And this recipe will show you how to use that functionality.

How to do it...
1.	 Let's start with the index structure (just add this to your schema.xml file, to the

field section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="price" type="float" indexed="true" stored="true" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

251

2.	 The example data that we index looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Book 1</field>
 <field name="price">39.99</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Book 2</field>
 <field name="price">30.11</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Book 3</field>
 <field name="price">27.77</field>
 </doc>
</add>

3.	 Let's assume that we want our statistics to be computed for the price field.
To do that, we send the following query to Solr:
http://localhost:8983/solr/select?q=name:book&stats=true&stats.
field=price

The response Solr returned should be as follows:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">name:book</str>
 <str name="stats">true</str>
 <str name="stats.field">price</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Book 1</str>
 <float name="price">39.99</float>
 </doc>
 <doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

252

 <str name="id">2</str>
 <str name="name">Book 2</str>
 <float name="price">30.11</float>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Book 3</str>
 <float name="price">27.77</float>
 </doc>
 </result>
 <lst name="stats">
 <lst name="stats_fields">
 <lst name="price">
 <double name="min">27.770000457763672</double>
 <double name="max">39.9900016784668</double>
 <long name="count">3</long>
 <long name="missing">0</long>
 <double name="sum">97.87000274658203</double>
 <double name="sumOfSquares">3276.9852964233432</double>
 <double name="mean">32.62333424886068</double>
 <double name="stddev">6.486119174232198</double>
 <lst name="facets"/>
 </lst>
 </lst>
 </response>

As you can see, in addition to the standard results list, there was an additional section
available. Now let's see how it worked.

How it works...
The index structure is pretty straightforward. It contains three fields – one for holding the
unique identifier (the id field), one for holding the name (the name field), and one for holding
the price (the price field).

The file that contains the example data is simple, so I'll skip discussing it.

The query is interesting. In addition to the q parameter we have two new parameters. The
first one, stats=true, tells Solr that we want to use StatsComponent – the component
which will calculate the statistics for us. The second parameter, stats.field=price tells
StatsComponent which field to use for the calculation. In our case, we told Solr to use the
price field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

253

Now let's look at the result returned by Solr. As you can see, StatsComponent, added an
additional section to the results. The section contains the statistics generated for the field
that we told Solr we wanted the statistics for. The following statistics are available:

ff min: This is the minimum value that was found in the field, for the documents that
matched the query

ff max: This is the maximum value that was found in the field, for the documents that
matched the query

ff sum: This is the sum of all values in the field, for the documents that matched
the query

ff count: This specifies how many non-null values were found in the field for the
documents that matched the query

ff missing: This specifies the number of documents that matched the query but
didn't have any value in the specified field

ff sumOfSquares: This specifies the sum of all values squared in the field, for the
documents that matched the query

ff mean: This specifies the average for the values in the field, for the documents that
matched the query

ff stddev: This specifies the standard deviation for the values in the field, for the
documents that matched the query

You should also remember that you can specify a number of the stats.field parameters
to calculate the statistics for the different fields in a single query.

Please be careful when using this component on the multivalued fields as it can be a
performance bottleneck.

Checking the user's spelling mistakes
Most modern search sites have some kind of user spelling mistakes correction mechanism.
Some of those sites have a sophisticated mechanism, while others just have a basic one. But
actually that doesn't matter. If all search engines have it then there is a high probability that
your client or boss will want one too. Is there a way to integrate such a functionality into Solr?
Yes there is, and this recipe will show you how to do it.

Getting ready
In this recipe we'll learn how to use the Solr spellchecker component. The detailed information
about setting up the spellchecker component can be found in the Configuring spellchecker to
not use its own index recipe in Chapter 1, Apache Solr Configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

254

How to do it...
1.	 Let's begin with the index structure (just add this to your schema.xml file, to the

field section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />

2.	 The data that we are going to index looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr cookbook</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Mechanics cookbook</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Other book</field>
 </doc>
</add>

3.	 Our spell checking mechanism will work on the basis of the name field. Now,
let's add the appropriate search component to the solrconfig.xml file:
<searchComponent name="spellcheck" class="solr.
SpellCheckComponent">
 <str name="queryAnalyzerFieldType">name</str>
 <lst name="spellchecker">
 <str name="name">direct</str>
 <str name="field">name</str>
 <str name="classname">solr.DirectSolrSpellChecker</str>
 <str name="buildOnCommit">true</str>
 </lst>
</searchComponent>

4.	 In addition to that we would like to have it integrated into our search handler,
so we make the default search handler definition the same as in the following
code (add this to your solrconfig.xml file):
<requestHandler name="/spell" class="solr.SearchHandler"
startup="lazy">
 <lst name="defaults">
 <str name="df">name</str>
 <str name="spellcheck.dictionary">direct</str>
 <str name="spellcheck">on</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

255

 <str name="spellcheck.collate">true</str>
 </lst>
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

5.	 Now let's check how it works. To do that we will send a query that contains a spelling
mistake. We will send the words other boak instead of other book. The query
doing that should look like as follows:
http://localhost:8983/solr/spell?q=name:(othar boak)

The Solr response for that query looks like the following response:
<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3</int>
 </lst>
 <result name="response" numFound="0" start="0">
 </result>
 <lst name="spellcheck">
 <lst name="suggestions">
 <lst name="other">
 <int name="numFound">1</int>
 <int name="startOffset">6</int>
 <int name="endOffset">11</int>
 <arr name="suggestion">
 <str>other</str>
 </arr>
 </lst>
 <lst name="boak">
 <int name="numFound">1</int>
 <int name="startOffset">12</int>
 <int name="endOffset">16</int>
 <arr name="suggestion">
 <str>book</str>
 </arr>
 </lst>
 <str name="collation">name:(other book)</str>
 </lst>
 </lst>
 </response>

As you can see for the preceding response, Solr corrected the spelling mistake we made.
Now let's see how that happened.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

256

How it works...
The index structure is pretty straightforward. It contains two fields, one for holding the unique
identifier (the id field), one for holding the name (the name field). The file that contains the
example data is simple, so I'll skip discussing it.

The spellchecker component configuration is something we discussed already in the
Configuring spellchecker to not use its own index recipe in the first chapter. So again,
I'll look at only the most important fragments.

As you can see in the configuration, we've defined a spellchecker component that will use
Solr DirectSolrSpellChecker in order to not store its index on the hard disk drive. In
addition to that, we configured it to use the name field for spellchecking and also to use
that field analyzer to process queries. Our /spell handler is configured to automatically
include spellchecking results (<str name="spellcheck">on</str>), to create collation
(<str name="spellcheck.collate">true</str>), and to use direct dictionary (<str
name="spellcheck.dictionary">direct</str>). All those properties were already
discussed in the previously mentioned recipe.

Now let's look at the query. We send the boak and othar words in the query parameter (q).
The spellchecker component will be activated automatically because of the configuration of
our /spell handler, and that's actually all there is to it when it comes to the query.

Finally we come to the results returned by Solr. As you can see there were no documents
found for the word boak and the word other, that's what we actually were expecting.
But as you can see there is a spellchecker component section added to the results list
(the <lst name="spellcheck"> tag). For each word there is a suggestion returned
by Solr (the tag <lst name="boak"> is the suggestion for the word boak). As you can
see, the spellchecker component informed us about the number of suggestions found
(<int name="numFound">), about the start and end offset of the suggestion (<int
name="startOffset">and <int name="endOffset">), and about the actual
suggestions (the <arr name="suggestion"> array). The only suggestion that Solr
returned was the book word (<str>book</str> under the suggestion array). The
same goes for the second word.

There is an additional section in the spellchecker component results generated by the
spellcheck.collate=true parameter, <str name="collation">name:(other
book)</str>. This tells us what query Solr suggested to us. We can either show the query
to the user or send it automatically to Solr and show to the user the corrected results list
and this one is up to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

257

Using field values to group results
Imagine a situation where your data set is divided into different categories, subcategories,
price ranges, and things like that. What if you would like to not only get information about
counts in such a group (with the use of faceting), but would also like to show the most
relevant documents in each of the groups? Is there a grouping mechanism of some kind
in Solr? Yes there is, and this recipe will show you how to use this functionality in order
to divide documents into groups on the basis of field values.

How to do it...
1.	 Let's start with the index structure. Let's assume that we have the following fields

in our index (just add this to the schema.xml file to the field section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="category" type="string" indexed="true" stored="true"
/>
<field name="price" type="tfloat" indexed="true" stored="true" />

2.	 The example data, which we are going to index, looks like the following code:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr cookbook</field>
 <field name="category">it</field>
 <field name="price">39.99</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Mechanics cookbook</field>
 <field name="category">mechanics</field>
 <field name="price">19.99</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">ElasticSearch book</field>
 <field name="category">it</field>
 <field name="price">49.99</field>
 </doc>
</add>

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

258

3.	 Let's assume that we would like to get our data divided into groups on the basis of
their category. In order to do that we send the following query to Solr:

http://localhost:8983/solr/select?q=*:*&group=true&group.
field=category

The results returned by the preceding query are as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="group.field">category</str>
 <str name="group">true</str>
 <str name="q">*:*</str>
 </lst>
 </lst>
 <lst name="grouped">
 <lst name="category">
 <int name="matches">3</int>
 <arr name="groups">
 <lst>
 <str name="groupValue">it</str>
 <result name="doclist" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>
 <str name="category">it</str>
 <float name="price">39.99</float>
 </doc>
 </result>
 </lst>
 <lst>
 <str name="groupValue">mechanics</str>
 <result name="doclist" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Mechanics cookbook</str>
 <str name="category">mechanics</str>
 <float name="price">19.99</float>
 </doc>
 </result>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

259

 </lst>
 </arr>
 </lst>
 </lst>
 </response>

As you can see the grouped results are different from the ones returned during a usual
search. But as you can see we got a single document per group which means it worked.
So now let's see how.

How it works...
Our index structure is very simple. It consist four fields – one responsible for the document
identifier (the id field), one used for holding the name of the book (the name field), its
category (the category field), and the last one used to hold the price of the book (the
price field). Our example data is also very simple, but please know that the first and second
book belongs to the same it category and the second book belongs to another category.

Let's look at our query now. We said that we want to have our documents divided on the basis
of contents of the category field. In order to do that, we've added a new parameter called
group, which is set to true. This tells Solr that we want to enable the grouping functionality.
And similar to faceting, we've added a second parameter we are not familiar with. The group.
field parameter is set to the name of the field holding books category, and
that's all we need.

If we look at the results returned by Solr, they are a bit different than the usual results. You
can see the usual response header, however, the resulting groups are returned in the <lst
name="grouped"> tag. The <lst name="category"> tag is generated for each group.
field parameter passed in the query; this time it tells us that the following results will be
for the category field. The <int name="matches">3</int> tag informs us how many
documents were found for our query. This is the same as the numFound value during our
usual query.

Next we have the groups array, which holds the information about the groups that were
created by Solr in the results. Each group is described by the it value, that is, the <str
name="groupValue">it</str> section for the first group, which means that all documents
in that group have the it value in the field used for grouping. In the result tag we can see
the documents returned for the group. By default Solr will return the most relevant document
for each group. I'll skip commenting on the result tag as it is almost identical to the results
Solr returns for a non-grouped query and we are familiar with those, right?

One last thing – you can specify multiple group.field parameters with different fields in a
single query in order to get multiple grouping.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

260

There's more...
There is one more thing about grouping on the basis of field values and I would like to share a
few thoughts about that.

More than a single document in a group
Sometimes you may need to return more than a single document in a group. In order to do
that you will need to use the group.limit parameter and set it to the maximum number of
documents you want to have. For example, if we would like to have 10 documents per group
of results, we would send the following query:

http://localhost:8983/solr/select?q=*:*&group=true&group.
field=category&group.limit=10

Using queries to group results
Sometimes grouping results on the basis of field values is not enough. For example, imagine
that we would like to group documents in price brackets, that is, we would like to show the
most relevant document for documents with price range of 1.0 to 19.99, a document for
documents with price range of 20.00 to 50.0, and so on. Solr allows us to group results on
the basis of query results. This recipe will show you how to do that.

Getting ready
In this chapter we will use the same index structure and test data as we used in the Using
field values to group results recipe in this chapter. Please read it before continuing.

How to do it…
As we are reusing the data and index structure from the Using field values to group results
recipe, we can start with the query. In order to group our documents on the basis of query
results, we can send the following query:

http://localhost:8983/solr/select?q=*:*&group=true&group.query=price:
[20.0+TO+50.0]&group.query=price:[1.0+TO+19.99]

The results of the preceding query look as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

261

 <arr name="group.query">
 <str>price:[20.0 TO 50.0]</str>
 <str>price:[1.0 TO 19.99]</str>
 </arr>
 <str name="group">true</str>
 <str name="q">*:*</str>
 </lst>
 </lst>
 <lst name="grouped">
 <lst name="price:[20.0 TO 50.0]">
 <int name="matches">3</int>
 <result name="doclist" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>
 <str name="category">it</str>
 <float name="price">39.99</float>
 </doc>
 </result>
 </lst>
 <lst name="price:[1.0 TO 19.99]">
 <int name="matches">3</int>
 <result name="doclist" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Mechanics cookbook</str>
 <str name="category">mechanics</str>
 <float name="price">19.99</float>
 </doc>
 </result>
 </lst>
 </lst>

 </response>

So now let's look at how it works.

How it works...
As you can see in the query we told Solr that we want to use the grouping functionality
by using the group=true parameter. In addition to that we specify that we want to have
two groups calculated on the basis of the queries. The first group should contain the
documents that match the following range query price=[20.0+TO+50.00] (the group.
query=price:[1.0+TO+19.99] parameter), and the second group should contain
documents that match the following range query price=[1.0+TO+19.99] (the group.
query=price:[1.0+TO+19.99] parameter).

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

262

If you look at the results, they are very similar to the ones for grouping on the basis of field
values. The only difference is in the name of the groups. When using the field values for
grouping, groups were named after the used field names. However, when using queries
to group documents, groups are named as our grouping queries. So in our case, we have
two groups – one named price:[1.0+TO+19.99] (the <lst name="price:[1.0
TO 19.99]"> tag) and a second one named price:[20.0 TO 50.0] (the <lst
name="price:[20.0 TO 50.0]"> tag).

Using function queries to group results
Imagine that you would like to group results not by using queries or field contents, but instead
you would like to use a value returned by a function query. Imagine you could group documents
on the basis of their distance from a point. Sounds good, Solr allows that and in the following
recipe we will see how we can use a simple function query to group results.

Getting ready
In this chapter we will use the same index structure and test data we used in the Sorting
results by a function value recipe in this chapter. We will also use some knowledge that
we gained in the Using field values to group results recipe in this chapter. Please read
them before continuing.

How to do it...
I assume that we would like to have our documents grouped on the basis of the distance
from a given point (in real life we would probably like to have some kind of bracket calculated,
but let's skip that for now).

As we are using the same index structure and test data as we used in the Sorting results by
a function value recipe in this chapter, we'll start with the query. In order to achieve what we
want we send the following query:

http://localhost:8983/solr/select?q=*:*&group=true&group.
func=geodist(geo,0.0,0.0)

The following results were returned by Solr after running the preceding query:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="group.func">geodist(geo,0.0,0.0)</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

263

 <str name="group">true</str>
 <str name="q">*:*</str>
 </lst>
 </lst>
 <lst name="grouped">
 <lst name="geodist(geo,0.0,0.0)">
 <int name="matches">3</int>
 <arr name="groups">
 <lst>
 <double name="groupValue">1584.126028923632</double>
 <result name="doclist" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Company one</str>
 <str name="geo">10.1,10.1</str>
 </doc>
 </result>
 </lst>
 <lst>
 <double name="groupValue">1740.0195023531824</double>
 <result name="doclist" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Company two</str>
 <str name="geo">11.1,11.1</str>
 </doc>
 </result>
 </lst>
 <lst>
 <double name="groupValue">1911.187477467305</double>
 <result name="doclist" numFound="1" start="0">
 <doc>
 <str name="id">3</str>
 <str name="name">Company three</str>
 <str name="geo">12.2,12.2</str>
 </doc>
 </result>
 </lst>
 </arr>
 </lst>
 </lst>

 </response>

Everything worked as it should have, so now let's see how it worked.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Additional Solr Functionalities

264

How it works...
As you can see, the query is very similar to the one we used when grouping our documents on
the basis of field values. So, we again pass the group=true parameter to enable grouping,
but this time in addition to that we pass the group.func parameter with the value, that is,
our function query based on whose results Solr should group our documents.

If you look at the results, they are again very similar to the ones seen in grouping on the basis
of field values. The only difference is in the names of the groups. When using the field values
for grouping, groups were named after the used field names. However, when using function
queries to group documents, groups are named by the result of the function query. So in our
case, we have three groups because our function query returned three different results, as
illustrated in the following list:

ff The group named 1584.126028923632 (the <double name="groupVal
ue">1584.126028923632</double> tag)

ff The group named 1740.0195023531824 (the <double name="groupVal
ue">1740.0195023531824</double> tag)

ff The group named 1911.187477467305 (the <double name="groupVal
ue">1911.187477467305</double> tag)

www.it-ebooks.info

http://www.it-ebooks.info/

9
Dealing with Problems

In this chapter we will cover:

ff How to deal with too many opened files

ff How to deal with out-of-memory problems

ff How to sort non-English languages properly

ff How to make your index smaller

ff Diagnosing Solr problems

ff How to avoid swapping

Introduction
Every Solr deployment will, sooner or later, have some kind of problem. It doesn't matter
if the deployment is small and simple or if it's a big and complicated deployment containing
multiple servers and shards. In this chapter I'll try to help you with some of the problems you
can run into when running Solr. I hope this will help you and make your task easier.

How to deal with too many opened files
Sometimes you might encounter a strange error, something that lies on the edge between
Lucene and the operating system—the "too many files opened" exception. Is there something
we can do about it? Yes, we can, and this recipe will show you how.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Problems

266

How to do it...
The following steps show how to deal with too many opened files:

1.	 So, for the purpose of the recipe let's assume that the header of the exception thrown
by Solr looks like this:
java.io.FileNotFoundException: /use/share/solr/data/index/_1.fdx
(Too many open files)

2.	 What can you do instead of pulling your hair out? First of all, this probably occurred on
a Unix-/Linux-based operating system. So, let's start with setting the opened files' limit
higher. To do that, you need to edit the /etc/security/limits.conf file of your
operating system and set the following values (I assume Solr is running as solr user):
solr soft nofile 32000
solr hard nofile 32000

3.	 Now let's add the following line to the .bash_profile file in the solr user home
directory:
ulimit -n 32000

The probable cause of the "too many files opened" exception is the number of files the
index is built of. The more segments the index is built of, the more files will be used.

4.	 The next thing sometimes worth considering is lowering the mergeFactor
parameter. To make things simple, the lower the mergeFactor setting, the fewer
files will be used to construct the index (please read the How it works... section
that follows, about the dangers of having a very low merge factor). So, let's set
mergeFactor to 2. We modify the following line in the solrconfig.xml file and
set it with the appropriate value (2 in our case):

<mergeFactor>2</mergeFactor>

After we set that configuration value, we need to run the optimization of the index. Now let's
see what the options mean.

How it works...
We don't discuss the operating system's internal working in this book, but in this section we
will make an exception. The mentioned limits.conf file in the /etc/security directory
lets you specify the opened files limit for the users of your system. In the example shown
earlier, we set the two necessary limits to 32000 for the user solr, so if you had problems
with the number of opened files in the default setup you should see the difference after
restarting Solr. However, remember that if you are working as the user and you change
the limits then you may need to log out and log in again to see those changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

267

Next, we have the mergeFactor parameter. This configuration parameter lets you determine
how often Lucene segments will be merged. The lower the value of mergeFactor, the
smaller the number of index files will be. However, you have to remember that having a small
mergeFactor value will lead to more background merges being done by Lucene, and thus
the indexing speed will be lower compared to the ones with a higher mergeFactor value
and your node's I/O system will be used more extensively. On the other hand, lower values
of mergeFactor will speed up searching.

How to deal with out-of-memory problems
As with every application written in Java, sometimes memory problems happen. When talking
about Solr, those problems are usually related to heap size. They usually happen when the
heap size is too low. This recipe will show you how to deal with those problems and what to
do to avoid them.

How to do it...
Let's consider what to do when we see an exception like this:

SEVERE: java.lang.OutOfMemoryError: Java heap space

Firstly, you can do something to make your task easier. You can add more memory that the
Java virtual machine can use if you have some free physical memory available in your system.
To do that, you need to add the Xmx and, preferably, the Xms parameter to the start-up
script of your servlet container (Apache Tomcat or Jetty). To do that, I used the default
Solr deployment and modified the parameters. This is how Solr was run with more than
the default heap size:

java –Xmx1024M –Xms512m –jar start.jar

How it works...
So what do the Xmx and Xms Java virtual machine parameters do? The Xms parameter
specifies how much heap memory should be assigned by the virtual machine at the start and
thus this is the minimal size of the heap memory that will be assigned by the virtual machine.
The Xmx parameter specifies the maximum size of the heap. The Java virtual machine will not
be able to assign more memory for the heap than the Xmx parameter.

You should remember one thing—sometimes it's good to set the Xmx and Xms parameters to
the same values. It will ensure that the virtual machine won't be resizing the heap size during
application execution and thus won't lose precious time in heap resizing.

One additional thing—be careful when setting the heap size to be too big. It is usually not
advised to give the heap size more than 60 percent of your total memory available in the
system, because your operating system's I/O cache will suffer.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Problems

268

There's more...
There are a few more things I would like to discuss when it comes to memory issues.

Monitoring heap when an out-of-memory error occurs
If the out-of-memory errors occurs even after the actions you've done, you should start
monitoring your heap. One of the easiest ways to do that is to add the appropriate Java
virtual machine parameters. Those parameters are XX:+HeapDumpOnOutOfMemory and
XX:HeapDumpPath. Those two parameters tell the virtual machine to dump the heap on the
out-of-memory error and write it to a file created in the specified directory. So the default Solr
deployment's start command would look like this:

java –jar –XX:+HeapDumpOnOutOfMemoryError –XX:HeapDumpPath=/var/log/dump/
start.jar

Reducing the amount of memory needed by Solr
However there are times (even if your system has a large amount of memory available), when
you may be forced to think about Solr memory consumption reduction. In such cases there is
no general advice, but these are a few things that you can keep in mind:

ff Look at your queries and consider how they are built

ff How you use the faceting mechanism and so on (facet.method=fc tends to use
less memory when the field has many unique terms in the index)

ff Remember that fetching too many documents at a time may cause Solr to run out of
heap memory (for example, when setting a large value for the query result window)

ff Reduce the number of calculated faceting results (facet.limit parameter)

ff Check the memory usage of your caches—this can also be one of the reasons for
the problems with memory

ff If you don't need to use the normalization factor for text fields, you can set
omitNorms="true" for such fields and save some additional memory too

ff Remember that grouping mechanisms requires memory; for big result sets and
high numbers of groups, a vast amount of memory may be needed

How to sort non-English languages properly
As you probably already know, Solr supports UTF-8 encoding and thus can handle data
in many languages. But, if you ever needed to sort some languages that have characters
specific to them you probably know that it doesn't work well on a standard Solr string
type. This recipe will show you how to deal with sorting in Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

269

How to do it...
These steps tell us how to sort non-English languages properly:

1.	 For the purpose of this recipe, I have assumed that we will have to sort text that
contains Polish characters. To show the good and bad sorting behaviour we need
to create the following index structure (add this to your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="name_sort_bad" type="string" indexed="true"
stored="true" />
<field name="name_sort_good" type="text_sort" indexed="true"
stored="true" />

2.	 Now let's define some copy fields to automatically fill the name_sort_bad and
name_sort_good fields. Here is how they are defined (add this after the fields
section in the schema.xml file):
<copyField source="name" dest="name_sort_bad" />
<copyField source="name" dest="name_sort_good" />

3.	 The last thing about the schema.xml file is the new type. So the text_sort
definition looks like this:
<fieldType name="text_sort" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory" />
 <filter class="solr.CollationKeyFilterFactory" language="pl"
country="PL" strength="primary" />
 </analyzer>
</fieldType>

4.	 The test we need to index looks like this:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Łąka</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Lalka</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Ząb</field>
 </doc>
</add>

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Problems

270

5.	 First, let's take a look at how the incorrect sorting order looks. To do this, we send the
following query to Solr:
http://localhost:8983/solr/select?q=*:*&sort=name_sort_bad+asc

And now the response that was returned for the query is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="sort">name_sort_bad asc</str>
 </lst>
</lst>
<result name="response" numFound="3" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Lalka</str>
 <str name="name_sort_bad">Lalka</str>
 <str name="name_sort_good">Lalka</str>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Ząb</str>
 <str name="name_sort_bad">Ząb</str>
 <str name="name_sort_good">Ząb</str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Łąka</str>
 <str name="name_sort_bad">Łąka</str>
 <str name="name_sort_good">Łąka</str>
 </doc>
</result>
</response>

6.	 Now let's send the query that should return the documents sorted in the correct
order. The query looks like this:
http://localhost:8983/solr/select?q=*:*&sort=name_sort_good+asc

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

271

And the results returned by Solr are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">6</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="sort">name_sort_good asc</str>
 </lst>
</lst>
<result name="response" numFound="3" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Lalka</str>
 <str name="name_sort_bad">Lalka</str>
 <str name="name_sort_good">Lalka</str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Łąka</str>
 <str name="name_sort_bad">Łąka</str>
 <str name="name_sort_good">Łąka</str>
 </doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Ząb</str>
 <str name="name_sort_bad">Ząb</str>
 <str name="name_sort_good">Ząb</str>
 </doc>
</result>
</response>

As you can see the order is different and believe me it's correct. Now let's see how it works.

How it works...
Every document in the index is built on four fields. The id field is responsible for holding the
unique identifier of the document. The name field is responsible for holding the name of the
document. The last two fields are used for sorting.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Problems

272

The name_sort_bad field is nothing new; it's just a field based on string, which
is used to perform sorting. The name_sort_good field is based on a new type, the
text_sort field type. The field is based on the solr.TextField type and on solr.
KeywordTokenizerFactory, which basically means that our text won't be tokenized. We
used this trick because we want to sort on that field and thus we don't want the data in it to
be tokenized, but we want to use a special filter on that field. The filter that allows Solr to sort
correctly is the solr.CollationKeyFilterFactory filter. We used three attributes of
this filter. First, the language attribute, which tells Solr about the language of the field. The
second attribute is country which tells Solr about the country variant (this can be skipped
if necessary). The strength attribute informs Solr about the collation strength used. More
information about those parameters can be found in the JDK documentation. One thing that is
crucial is that you need to create an appropriate field and set the appropriate attribute's value
for every non-English language you want to sort on.

The two queries you can see in the examples differ in only one thing, the field used for sorting.
The first query uses the string-based field, name_sort_bad. When sorting on this field, the
document order will be incorrect when there are non-English characters present. However,
when sorting on the name_sort_good field everything will be in the correct order as shown
in the example.

How to make your index smaller
There may be situations where you would like to make your index smaller. The reasons may be
different—you may want to have a smaller index so that it would fit into the operating system's
I/O cache or you want to store your index in RAMDirectory. This recipe will try to help you
with the process of index slimming.

How to do it...
The following steps tell us how to make your index smaller:

1.	 For the purpose of this recipe, I assumed that we will have four fields that describe the
document. I created the following index structure (add this to your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="true" />
<field name="description" type="text" indexed="true" stored="true"
/>
<field name="price" type="string" indexed="true" stored="true" />

Let's assume that our application has the following requirements:

�� We need to search on name and description fields
�� We need to show two fields in the results: id and price
�� We don't use highlighting and spellchecker

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

273

2.	 So the first thing we should do is set the stored="false" attribute for the name
and description fields.

3.	 Next, we set the indexed="false" attribute for the price field.

4.	 Now, the last thing to do is add the term options. We add the
termVectors="false", termPositions="false", and
termOffsets="false" attributes to the name and description fields.
The modified schema looks like this:

<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text" indexed="true" stored="false"
termVectors="false" termPositions="false" termOffsets="false"/>
<field name="description" type="text" indexed="true"
stored="false" termVectors="false" termPositions="false"
termOffsets="false"/>
<field name="price" type="string" indexed="false" stored="true" />

Let's check the index size now. I've indexed 1,000,000 sample documents with the use
of the original schema.xml file. The index size was 329,237,331 bytes. After changing
the schema.xml file and indexing the same data the index size was 84,301,603 bytes.
So as you can see, the index size was reduced.

Now let's see why we see this reduction in the index size.

How it works...
The first schema.xml file you see is the standard index structure provided with Solr example
deployment, at least when talking about the types. We have four fields, all of them indexed
and stored, which means all of them are searchable and are shown in the result list.

Now let's look at the requirements. First of all we only need to search on the name and
description fields, which mean that the rest of the fields can be set up as not indexed
(indexed="false" attribute). We set that for the price field, while we set the id field to be
searchable, as we need that to avoid duplicates. When the indexed attribute is set to false,
the information in that field is not indexed which basically means that it isn't written into the
Lucene-inverted index and thus it is not available; this saves index space. Of course you can't
set this attribute to false if you need this field to be searchable.

The second requirement tells us what fields we are obligated to show in the search results.
Those field are the ones that need the stored attribute set to true, and the rest can have
this attribute set to false. When we set this attribute to false, we tell Solr that we don't
want to store the original value—the one before analysis—thus we don't want this field to be
included in the search results. Setting this attribute to true on many fields will increase
the index size substantially.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Problems

274

The last requirement is actually information; we don't need to worry about highlighting
functionality so we can reduce the index size in a greater way. To do that we add the
termVectors="false", termPositions="false", and termOffsets="false"
attributes to the name and description fields. By doing that we tell Solr not to store
any information about terms in the index. This basically means that we can't use the
highlighting functionalities of Solr, but we have reduced our index size substantially
and we don't need highlighting.

If we don't need index time boosting and we do not care about length normalization, we could
also turn on the omitting of that factor (the omitNorms="true" attribute) for the fields
based on the text type (for primitive types such as string, integer, and so on it's turned
on by default in Solr 4.0). This would shrink the index a bit more and in addition to that save
us some memory during queries.

Last few words. Every time you think about reducing the index size, first do the optimization,
then look at your schema.xml file and see if you need all those fields. Then check which
fields shouldn't be stored and which you can omit when indexing. The last thing should
be removing the information about terms, because there may come a time when you will
need this information and the only thing you will be able to do is a full indexation of millions
of documents.

There's more...
There is one additional thing I would like to mention.

Estimating your index size and memory usage
Sometimes it's necessary to have a rough estimate of the index size and the memory
usage of your Solr instance. Currently there is a draft of the Microsoft Excel spreadsheet
that lets you do that kind of estimation. If you are interested in it, download the following
file: http://svn.apache.org/repos/asf/lucene/dev/trunk/dev-tools/size-
estimator-lucene-solr.xls.

Diagnosing Solr problems
There are many tools out there that can help you diagnose problems with Solr. You can
monitor your operating system by yourself by using different operating system commands
such as vmstat, dstat, and iostat. You can use different Java tools such as jconsole
and jvisualvm to look at the JMX mbeans, you can monitor your garbage collector work,
and so on. However in order to properly diagnose what's happening with your Apache Solr
cluster you'll need to see the whole view as well as the specifics. There are different tools
out there that you can use, however this recipe will show you what you can find in one of
them—Scalable Performance Monitoring.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

275

Getting ready
This recipe assumes that you have Scalable Performance Monitoring installed and running. If
you don't, please go to http://sematext.com/spm/index.html, create a free account,
and download the client that's suitable for you. The installation is very simple and you'll be
guided by the Scalable Performance Monitoring installer from the beginning to the end.

How to do it...
1.	 Let's assume that we want to check our Solr instance health by looking at the GUI of

Scalable Performance Monitoring. After logging we would get the following view:

This is an overview of the system, however we would like to see some details.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Problems

276

2.	 Let's start with the information about indices.

3.	 Now let's have a look at the cache usage:

4.	 By now we know what our index and Solr caches' usage looks like and we know if we
need to tune them or not, so now let's look at the query rate and its latency:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

277

5.	 Here we can see the warm-up queries' time and execution:

We've got all the information that is connected to queries, so now we can go and see
the other crucial information such as memory and CPU usage, Java heap usage, and
how Java garbage collector works.

6.	 Let's start with the memory and CPU usage:

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Problems

278

7.	 And now we can see the JVM heap statistics:

8.	 And finally we can see how the garbage collector works:

That's all we need during the usual work when we want to see how different parts of Solr work.
If we would like to go in depth and see how the I/O subsystem works or the swap usage we can
use other aggregated reports available in any of the monitoring systems, or you could just use
the appropriate system commands like the ones mentioned in the introduction to the recipe.

How it works...
Let's discuss the provided statistics in a bit more dtail. On the first screenshot provided you
can see the overview of the system. This part of Scalable Performance Monitoring will be
shown to you as soon as you log in to the system. You'll usually use it to get the whole idea
about the system, but you'll want to look at the detailed reports in order to see a higher
granularity of your data.

On the second screenshot you can see the index statistics (or indices depending on the
options you've chosen). You can see the information about the number of documents in
the index, the maximum size of the index, the number of segments, and the delta, which is
calculated as the maximum number of documents minus the current number of documents.
Not shown on the screenshot are the filesystem statistics which tell you about the size of the
index on the disk. With the use of this data you can see the complete information about your
core's or collection's disk drive usage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

279

The third screenshot is one of the most important ones—the information about Apache Solr
caches. Although I haven't shown all the information here, you can see a single cache on the
screenshot—the query result cache (we didn't show the document cache and the filter cache).
You can see information about the size of the cache, the maximum size of the cache, the
number of evictions, and so on. Remember, if your cache is too low, its size will be equal
to the maximum size and you'll start seeing evictions, which is not good and you'll probably
want to change the cache configuration.

The query rate and latency report shown in the fourth screenshot provides information about
the number of queries and their average latency. You can see how your queries were executed
and if you need to start thinking about the optimization of your system.

In order to check how your warm-up queries were executed you can look at the fifth of
the provided screenshots. You can see the amount of time for which your warm-up queries
were executed and how long it took to auto-warm your query result cache and your filter
cache. This information can be valuable when dealing with problems such as Solr hanging
during the opening of new or first searches.

The last three screenshots provide the information that is not directly connected to Apache
Solr, but very valuable from our point of view, when we have to see what is happening with
our Solr instance. So let's discuss them.

The sixth screenshot shows information about the CPU and memory usage. For the CPU
information you can see how it works; the percent of time spent idling, working on user-run
software, working with operating system software, handling interruptions, and so on. If you
look at the memory graph you will find the total, used, free, cached, and buffered statistics.
That's basically all you need in order to see if your CPU is 100 percent utilized and how your
system memory is utilized. This is crucial when your system is not working in the way that you
would like it to.

The seventh screenshot provides information about the Java virtual machine. You can see the
heap memory statistics and the threading information (which is not shown in the screenshot).
The heap usage graph allows us to see if the amount of memory we specified for our Solr
instance is enough to handle all the operations that need to be done.

The final screenshot provides information about how your JVM garbage collector works.
In most situations you will want it to run more frequently, but for a shorter period of time
stop the world events which may cause your Solr instances to stop handling queries or
indexing for a short period of time.

To sum up, all the information can be gathered manually by using different system and Java
tools. The crucial part of every monitoring system is the ability to show you graphs that will let
you point to a certain event in time. We looked at a single monitoring solution, but there are
many more available and if you don't like Scalable Performance Monitoring you can use any
available. One more thing; please remember that we only scraped the surface in this recipe
and the book (or e-book) you are holding in your hands doesn't describe all the information
regarding monitoring and dealing with problems. However I hope that this recipe will help you
at least start with this topic.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Problems

280

If you don't want to use Scalable Performance Monitoring, you can choose some other
technology that is available like Ganglia (http://ganglia.sourceforge.net/), Mumin
(http://munin-monitoring.org/), Zabix (http://www.zabbix.com/), Cacti (http://
www.cacti.net/), or any commercial ones like New Relic (http://newrelic.com/).

How to avoid swapping
One of the crucial things when running your Solr instance in production is performance. What
you want is to give your clients relevant results in the blink of an eye. If your clients have to
wait for results for too long, some of them may choose other vendors or sites that provide
similar services. One of the things to remember when running a Java application such as
Apache Solr is to ensure that the operating system won't write the heap to disk. This ensures
that the part of the memory used by Solr won't be swapped at all. This recipe will show you
how to achieve that on a Linux operating system.

Getting ready
Please note that the following recipe is only valid when running Apache Solr on a Linux
operating system. In addition to that, please be advised that turning off swapping should
only be done when you have enough memory to handle all the necessary application in
your system and you want to be sure that there won't be any swapping.

How to do it...
1.	 Before turning off swapping let's look at the amount of swap memory used by

our operating system. In order to do that let's look at the main page of the Solr
administration panel:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

281

2.	 As you can see some swap memory is being used. In order to demonstrate how to
turn off swap usage I've freed some memory on the virtual machine I was using for
tests and after that I've run the following commands:
sudo sysctl -w vm.swappiness=0

sudo /sbin/swapoff -a

3.	 After the second command is done running, refresh the main page of the Solr admin
instance and this is what it will show:

4.	 It seems like it is working, but in order to be sure I've run the following command:

free -m

And the response of it was:

 total used free shared buffers cached

Mem: 3001 2326 675 0 3 97

-/+ buffers/cache: 2226 775

Swap: 0 0 0

And again we can see that there is no swap usage. Now let's see how this works.

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Problems

282

How it works...
On the first provided screenshot you can see that there is a bit more than 183 MB of
swap memory being used. This is not good; in a production environment you want to avoid
swapping, of course, if you have the necessary amount of memory. Swapping will make the
contents of the memory to be written onto the hard disk drive, thus making your operating
system and applications execute slower. This can also affect Solr.

So, in order to turn off swapping in a Linux operating system, we've run two commands. The
first one sets the vm.swappiness operating system property to 0, which means that we want
to avoid swapping. We needed to use sudo, because in order to set that property with the
use of the sysctl command we need administration privileges. The second command (the /
sbin/swapoff -a one) disables swapping on all known devices.

As you can see on the second screenshot, the Solr administration panel didn't even include
the swapping information so we may suspect that it was turned off. However in order to be
sure, we've used another Linux command, the free command with the -m switch, in order to
see the memory usage on our system. As you can see, the Swap section shows 0, so we can
now be sure that swapping was turned off.

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

In this chapter we will cover:

ff How to implement a product's autocomplete functionality

ff How to implement a category's autocomplete functionality

ff How to use different query parsers in a single query

ff How to get documents right after they were sent for indexation

ff How to search your data in a near real-time manner

ff How to get documents with all the query words at the top of the results set

ff How to boost documents based on their publication date

Introduction
In the previous nine chapters, we discussed about the different Apache Solr functionalities
and how to overcome some common problems and situations. However, I decided that we
will describe a few of the most common problems that arise on the Apache Solr mailing list
and during our work with our clients. This chapter is dedicated to describing how to handle
such situations, and I hope that you'll find it useful.

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

284

How to implement a product's autocomplete
functionality

The autocomplete functionality is very popular now. You can find it in most e-commerce sites,
on Google, Bing, and so on. It enables your users or clients to find what they want and do it fast.
In most cases, the autocomplete functionality also increases the relevance of your search by
pointing to the right author, title, and so on, right away without looking at the search results.
What's more, sites that use autocomplete report higher revenue after deploying it in comparison
to the situation before implementing it. Seems like a win-win situation, both for you and your
clients. So, let's look at how we can implement a product's autocomplete functionality in Solr.

How to do it...
Let's assume that we want to show the full product name whenever our users enter a part
of the word that the product name is made up of. In addition to this, we want to show the
number of documents with the same names.

1.	 Let's start with an example data that is going to be indexed:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">First Solr 4.0 CookBook</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Second Solr 4.0 CookBook</field>
 </doc>
</add>

2.	 We will need two main fields in the index – one for the document identifier and one
for the name. We will need two additional fields – one for autocomplete and one for
faceting that we will use. So, our index structure will look similar to the following code
snippet (we should add it to the schema.xml fields section):
<field name="id" type="string" indexed="true"
 stored="true" required="true" />
<field name="name" type="text" indexed="true"
 stored="true" />
<field name="name_autocomplete" type="text_autocomplete"
 indexed="true" stored="false" />
<field name="name_show" type="string" indexed="true"
 stored="false" />

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

285

3.	 In addition to this, we want Solr to automatically copy the data from the name field to
the name_autocomplete and name_show fields. So, we should add the following
copy fields section to the schema.xml file:
<copyField source="name" dest="name_autocomplete"/>
<copyField source="name" dest="name_show"/>

4.	 Now, the final thing about the schema.xml file — that is, the text_autocomplete
field type — it should look similar to the following code snippet (place it in the types
section of the schema.xml file):
<fieldType name="text_autocomplete"
 class="solr.TextField" positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EdgeNGramFilterFactory"
 minGramSize="1" maxGramSize="25" />
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

5.	 That's all. Now, if we would like to show all the products that start with the word sol
to our users, we would send the following query:
curl 'http://localhost:8983/solr/select?q=name_autocomplete:sol&q.
op=AND&rows=0&&facet=true&facet.field=name_show&facet.
mincount=1&facet.limit=5'

The response returned by Solr would be as follows:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="facet">true</str>
 <str name="fl">name</str>
 <str name="facet.mincount">1</str>
 <str name="q">name_autocomplete:sol</str>
 <str name="facet.limit">5</str>
 <str name="q.op">AND</str>
 <str name="facet.field">name_show</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

286

 <str name="rows">0</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="name_show">
 <int name="First Solr 4.0 CookBook">1</int>
 <int name="Second Solr 4.0 CookBook">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

As you can see, the faceting results returned by Solr are exactly what we were looking
for. So now, let's see how it works.

How it works...
Our example documents are pretty simple – they are only built of an identifier and a name
that we will use to make autocomplete. The index structure is where things are getting
interesting. The first two fields are the ones that you would have expected – they are used
to hold the identifier of the document and its name. However, we have two additional fields
available; the name_autocomplete field that will be used for querying and name_show that
will be used for faceting. The name_show field is based on a string type, because we want to
have a single token per name when using faceting.

With the use of the copy field sections, we can let Solr automatically copy the values of the
fields defined by the source attribute to the field defined by the dest field. Copying is done
before any analysis.

The name_autocomplete field is based on the text_autocomplete field type, which is
defined differently for indexing and querying. During query time, we divide the entered query
on the basis of white space characters using solr.WhitespaceTokenizerFactory, and
we lowercase the tokens with the use of solr.LowerCaseFilterFactory. For query time,
this is what we want because we don't want any more processing. For index time, we not only
use the same tokenizer and filter, but also solr.NGramFilterFactory. This is because
we want to allow our users to efficiently search for prefixes, so that when someone enters the
word sol, we would like to show all the products that have a word starting with that prefix,
and solr.NGramFilterFactory allows us to do that. For the word solr, it will produce
the tokens s, so, sol, and solr.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

287

We've also said that we are interested in grams starting from a single character (the
minGramsSize property) and the maximum size of grams allowed is 25 (the maxGramSize
property).

Now comes the query. As you can see, we've sent the prefix of the word that the users have
entered to the name_autocomplete field (q=name_autocomplete:sol). In addition to
this, we've also said that we want words in our query to be connected with the logical AND
operator (the q.op parameter), and that we are not interested in the search results (the
rows=0 parameter). As we said, we will use faceting for our autocomplete functionality,
because we need the information about the number of documents with the same titles, so
we've turned faceting on (the facet=true parameter). We said that we want to calculate
the faceting on our name_show field (the facet.field=name_show parameter). We are
also only interested in faceting a calculation for the values that have at least one document
in them (facet.mincount=1), and we want the top five results (facet.limit=5).

As you can see, we've got two distinct values in the faceting results; both with a single
document with the same title, which matches our sample data.

How to implement a category's
autocomplete functionality

Sometimes we are not just interested in our product's name for autocomplete. Imagine that
we want to show the category of our products in the autocomplete box along with the number
of products in each category. Let's see how we can use faceting
to do that.

How to do it...
This recipe will show how we can implement a category's autocomplete functionality.

1.	 Let's start with the example data, which is going to be indexed and which looks
similar to the following code snippet:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">First Solr 4.0 CookBook</field>
 <field name="category">Books</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Second Solr 4.0 CookBook</field>
 <field name="category">Books And Tutorials</field>
 </doc>
</add>

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

288

2.	 The fields section of the schema.xml configuration file that can handle the
preceding data should look similar to the following code snippet:
<field name="id" type="string" indexed="true"
 stored="true" required="true" />
<field name="name" type="text" indexed="true"
 stored="true" />
<field name="category" type="text_lowercase"
 indexed="true" stored="true" />

3.	 One final thing is the text_lowercase type definition, which should be placed in
the types section of the schema.xml file. It should look similar to the following
code snippet:
<fieldType name="text_lowercase" class="solr.TextField"
 positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

4.	 So now, if we would like to get all the categories that start with boo, along with the
number of products in those categories, we would send the following query:
curl 'http://localhost:8983/solr/select?q=*:*&rows=0&facet=tr
ue&facet.field=category&facet.mincount=1&facet.limit=5&facet.
prefix=boo'

The following response will be returned by Solr:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="facet">true</str>
 <str name="facet.mincount">1</str>
 <str name="indent">true</str>
 <str name="q">*:* </str>
 <str name="facet.limit">5</str>
 <str name="facet.prefix">boo</str>
 <str name="facet.field">category</str>
 <str name="rows">0</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

289

 </lst>
 </lst>

 <result name="response" numFound="2" start="0">
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="category">
 <int name="books">1</int>
 <int name="books and tutorials">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

As you can see, we have two categories, each containing a single product. So this is
what matches our example data. Let's now see how it works.

How it works...
Our data is very simple. We have three fields for each of our documents – one for the
identifier fields, one for holding the name of the document, and one for its category.
We will use the category field to do the autocomplete functionality, and we will use
faceting for it.

If you look at the index structure, for the category field, we use a special type – the text_
lowercase one. What it does is that it stores the category as a single token in the index
because of solr.KeywordTokenizerFactory. We also lowercase with the appropriate
filter. This is because we want to send the lowercased queries while using faceting.

The query is quite simple – we query for all the documents (q=*:* parameter), and
we don't want any results returned (the rows=0 parameter). We will use faceting for
autocomplete, so we turn it on (facet=true) and we specify the category field to calculate
the faceting (facet.field=category). We are also only interested in faceting a calculation
for the values that have at least one document in them (facet.mincount=1), and we want
the top five results (facet.limit=5). One of of the most important parameters in the query
is facet.prefix – using it we can return on those results in faceting that start with the
prefix defined by the mentioned parameter, which can be seen in the results.

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

290

How to use different query parsers in a
single query

Sometimes, it is good to be able to choose different query parsers in the same query.
For example, imagine that you would like to use the Extended DisMax query parser for
the main query, but in addition to this, we would like to use the field query parser for
filter queries. This recipe will show you how to do it.

How to do it...
This recipe will show how we can use different query parsers in a single query.

1.	 Let's start with the following index structure (this should go to the field section
in the schema.xml file):
<field name="id" type="string" indexed="true"
 stored="true" required="true" />
<field name="name" type="text" indexed="true"
 stored="true" />
<field name="category" type="string" indexed="true"
 stored="true" />

2.	 Now, let's index the following data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">First Solr 4.0 CookBook</field>
 <field name="category">Books</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Second Solr 4.0 CookBook</field>
 <field name="category">Books And Tutorials</field>
 </doc>
</add>

3.	 So, if we search for all the documents using the Extended DisMax query parser and
want to narrow our results to the Books And Tutorials category, then we can send
the following query:

curl 'http://localhost:8983/solr/select?q=*:*&defType=edismax&fq={
!term f=category}Books And Tutorials'

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

291

The results returned by Solr would be as follows:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="fq">
 {!term f=category}Books And Tutorials
 </str>
 <str name="q">*:*</str>
 <str name="defType">edismax</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Second Solr 4.0 CookBook</str>
 <str name="category">Books And Tutorials</str>
 </doc>
 </result>
</response>

As you can see, we got what we expected. So let's see how it works.

How it works...
Our index structure and example data are not that relevant for this recipe, so I'll skip
discussing them.

What we want to achieve is be sure that the data we filter will be properly processed, and
we want to avoid thinking about any kind of query parsing and Lucene special characters
escaping. In order to do this, we use the term query parser. To inform Solr that we want to
use this query parser in the filter query (the fq parameter), we use local parameter syntax
and send this filter query: {!term f=category}Books And Tutorials. The !term
part of the filter query says which query parser we want to use, and the f property specifies
the field to which we want to send the provided Books And Tutorials value.

That's all; as you can see in the provided results, everything works as intended.

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

292

How to get documents right after they were
sent for indexation

Let's say that we would like to get our documents as soon as they were sent for indexing, but
without any commit (both hard and soft) operation occurring. Solr 4.0 comes with a special
functionality called real-time get, which uses the information of uncommitted documents
and can return them as documents. Let's see how we can use it.

How to do it...
This recipe will show how we can get documents right after they were sent for indexation.

1.	 Let's begin with defining the following index structure (add it to the field section
in your schema.xml file):
<field name="id" type="string" indexed="true"
 stored="true" required="true" />
<field name="name" type="text" indexed="true"
 stored="true" />

2.	 In addition to this, we need the _version_ field to be present, so let's also add
the following field to our schema.xml file in its field section:
<field name="_version_" type="long" indexed="true"
 stored="true"/>

3.	 The third step is to turn on the transaction log functionality in Solr. In order to do
this, we should add the following section to the updateHandler configuration
section (in the solrconfig.xml file):
<updateLog>
 <str name="dir">${solr.data.dir:}</str>
</updateLog>

4.	 The last thing we need to do is add a proper request handler configuration to our
solrconfig.xml file:
<requestHandler name="/get"
 class="solr.RealTimeGetHandler">
 <lst name="defaults">
 <str name="omitHeader">true</str>
 <str name="indent">true</str>
 <str name="wt">xml</str>
 </lst>
</requestHandler>

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

293

5.	 Now, we can test how the handler works. In order to do this, let's index the following
document (which we've stored in the data.xml file):
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr 4.0 CookBook</field>
 </doc>
</add>

6.	 In order to index it, we use the following command:
curl 'http://localhost:8983/solr/update' --data-binary @data.xml
-H 'Content-type:application/xml'

7.	 Now, let's try two things. First, let's search for the document we've just added.
In order to do this, we run the following query:
curl 'http://localhost:8983/solr/select?q=id:1'

8.	 As you can imagine, we didn't get any documents returned, because we didn't
send any commit command – not even the soft commit one. So now, let's use
our defined handler:
curl 'http://localhost:8983/solr/get?id=1'

The following response will be returned by Solr:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <doc name="doc">
 <str name="id">1</str>
 <str name="name">Solr 4.0 CookBook</str>
 <long name="_version_">1418467767663722496</long>
 </doc>
</response>

As you can see, our document is returned by our get handler. Let's see how it
works now.

How it works...
Our index structure is simple, and there is only one relevant piece of information there
– the _version_ field. The real-time get functionality needs that field to be present in
our documents, because the transaction log relies on it. However, as you can see in the
provided example data, we don't need to worry about this field, because its filled and
updated automatically by Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

294

But let's backtrack a bit and discuss the changes made to the solrconfig.xml file.
There are two things there. The first one is the update log (the updateLog section),
which Solr uses to store the so-called transaction log. Solr stores recent index changes
there (until hard commit), in order to provide write durability, consistency, and the ability
to provide the real-time get functionality.

The second thing is the handler we defined under the name of /get with the use of the
solr.RealTimeGetHandler class. It uses the information in the transaction log to get
the documents we want by using their identifier. It can even retrieve the documents that
weren't committed and are only stored in the transaction log. So, if we want to get the
newest version of the document, we can use it. The other configuration parameters are
the same as with the usual request handler, so I'll skip commenting them.

The next thing we do is send the update command without adding the commit command,
so that we shouldn't be able to see the document during a standard search. If you look at the
results returned by the first query, you'll notice that we didn't get that document. However, when
using the /get handler that we previously defined, we get the document we requested. This is
because Solr uses the transaction log in order to even the uncommitted document.

How to search your data in a near real-time
manner

Sometimes, we need our data to be available as soon as possible. Imagine that we have a
SolrCloud cluster up and running, and we want to have our documents available for searching
with only a slight delay. For example, our application can be a content management system
where it would be very weird if a user adds a new document, and it would take some time for
it to be searchable. In order to achieve this, Solr exposes the soft commit functionality, and
this recipe will show you how to set it up.

How to do it...
This recipe will show how we can search for data in a near real-time manner.

1.	 For the purpose of this recipe, let's assume that we have the following index
structure (add it to the field section in your schema.xml file):
<field name="id" type="string" indexed="true"
 stored="true" required="true" />
<field name="name" type="text" indexed="true"
 stored="true" />

2.	 In addition to this, we need to set up the hard and soft automatic commits,
for which we will need to add the following section to the updateHandler
section in the solrconfig.xml file:

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

295

<autoCommit>
 <maxTime>60000</maxTime>
 <openSearcher>false</openSearcher>
</autoCommit>

<autoSoftCommit>
 <maxTime>1000</maxTime>
</autoSoftCommit>

3.	 Let's test if that works. In order to do this, let's index the following document
(which we've stored in the data.xml file):
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr 4.0 CookBook</field>
 </doc>
</add>

4.	 In order to index it, we use the following command:
curl 'http://localhost:8983/solr/update' --data-binary @data.xml
-H 'Content-type:application/xml'

5.	 We didn't send any commit command, so we shouldn't see any documents, right?
I think there will be one available – the one we've just send for indexation. But, let's
check that out by running the following simple search command:
curl 'http://localhost:8983/solr/select?q=id:1'

The following response will be returned by Solr:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">id:1</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr 4.0 CookBook</str>
 </doc>
 </result>
</response>

As you can see, our document was returned. So, let's see how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

296

How it works...
As you may know, the standard commit operation is quite resource-intensive – it flushes the
changes since the last commit to the disk to the new segment. If you would like to do that every
second, we could run into a problem of a very high amount of I/O writes and thus our searches
would suffer (of course, this depends on the situation). That's why, with Lucene and Solr 4.0,
the new commit type was introduced – the soft commit, which doesn't flush the changes to
disk, but just reopens the searcher object and allows us to search the data that is stored in
the memory.

As we are usually lazy and don't want to remember when it's time to send the commit and
when to use soft commit, we'll let Solr manage that so we properly need to configure the
update handler. First, we add the standard auto commit by adding the autoCommit section
and saying that we want to commit after every 60 seconds (the maxTime property is specified
in milliseconds), and that we don't want to reopen the searcher after the standard commit
(the openSearcher property is set to false).

The next thing is to configure the soft auto commit functionality by adding the softAutoCommit
section to the update handler configuration. We've specified that we want the soft commit to be
fired every second (the maxTime property is specified in milliseconds), and thus our searcher
will be reopened every second if there are changes.

As you can see, even though we didn't specify the commit command after our update
command, we are still able to find the document we've sent for indexation.

How to get the documents with all the query
words to the top of the results set

One of the most common problems that users struggle with when using Apache Solr is how to
improve the relevancy of their results. Of course, relevancy tuning is, in most cases, connected
to your business needs, but one of the common problems is to have documents that have all the
query words in their fields at the top of the results list. You can imagine a situation where you
search for all the documents that match at least a single query word, but you would like to show
the ones with all the query words first. This recipe will show you how to achieve that.

How to do it...
This recipe will show how we can get the documents with all the query words to the top of the
results set.

1.	 Let's start with the following index structure (add it to the field section in your
schema.xml file):

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

297

<field name="id" type="string" indexed="true"
 stored="true" required="true" />
<field name="name" type="text" indexed="true"
 stored="true" />
<field name="description" type="text" indexed="true"
 stored="true" />

2.	 The second step is to index the following sample data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr and all the others</field>
 <field name="description">This is about Solr</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Lucene and all the others</field>
 <field name="description">
 This is a book about Solr and Lucene
 </field>
 </doc>
</add>

3.	 Let's assume that our usual queries look similar to the following code snippet:
http://localhost:8983/solr/select?q=solr book&defType=edismax&mm=1
&qf=name^10000+description

Nothing complicated; however, the results of such query don't satisfy us, because
they look similar to the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="qf">name^10000 description</str>
 <str name="mm">1</str>
 <str name="q">solr book</str>
 <str name="defType">edismax</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

298

 <doc>
 <str name="id">1</str>
 <str name="name">Solr and all the others</str>
 <str name="description">This is about Solr</str>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Lucene and all the others</str>
 <str name="description">
 This is a book about Solr and Lucene
 </str>
 </doc>
 </result>
</response>

4.	 In order to change this, let's introduce a new handler in our solrconfig.xml file:
<requestHandler name="/better"
 class="solr.StandardRequestHandler">
 <lst name="defaults">
 <str name="indent">true</str>
 <str name="q">
 query:"{!edismaxqf=$qfQuery mm=$mmQuerypf=
 $pfQuerybq=$boostQuery v=$mainQuery}"
 </str>
 <str name="qfQuery">name^100000 description</str>
 <str name="mmQuery">1</str>
 <str name="pfQuery">name description</str>
 <str name="boostQuery">
 query:"{!edismaxqf=$boostQueryQf mm=100%
 v=$mainQuery}"^100000
 </str>
 <str name="boostQueryQf">name description</str>
 </lst>
</requestHandler>

5.	 So, let's send a query to our new handler:
http://localhost:8983/solr/better?mainQuery=solr book

We get the following results:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

299

 <int name="QTime">2</int>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Lucene and all the others</str>
 <str name="description">
 This is a book about Solr and Lucene
 </str>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Solr and all the others</str>
 <str name="description">This is about Solr</str>
 </doc>
 </result>
</response>

As you can see, it works. So let's discuss how.

How it works...
For the purpose of the recipe, we've used a simple index structure that consists of a
document identifier, its name, and description. Our data is very simple as well; it just
contains two documents.

During the first query, the document with the identifier 1 is placed at the top of the query
results. However, what we would like to achieve is be able to boost the name. In addition to
this, we would like to have the documents with words from the query close to each other at
the top of the results.

In order to do this, we've defined a new request handler named /better, which will
leverage the local params. The first thing is the defined q parameter, which is the standard
query. It uses the Extended DisMax parser (the {!edismax part of the query), and defines
several additional parameters:

ff qf: This defines the fields against which edismax should send the query. We tell
Solr that we will provide the fields by specifying the qfQuery parameter by using
the $qfQuery value.

ff mm: This is the "minimum should match" parameter, which tells edismax how
many words from the query should be found in a document for the document to
be considered a match. We tell Solr that we will provide the fields by specifying
the mmQuery parameter, by using the $mmQuery value.

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

300

ff pf: This is the phrase fields definition which specifies the fields on which Solr should
generate phrase queries automatically. Similar to the previous parameters that we've
specified, we will provide the fields by specifying the pfQuery parameter, by using
the $pfQuery value.

ff bq: This is the boost query that will be used to boost the documents. Again, we use
the parameter dereferencing functionality and tell Solr that we will provide the
value in the bqQuery parameter, by using the $bqQuery value.

ff v: This is the final parameter which specifies the content of the query; in our case,
the user query will be specified in the mainQuery parameter.

Basically, the preceding queries say that we will use the edismax query parser, phrase,
and boost queries. Now let's discuss the values of the parameters.

The first thing is the qfQuery parameter, which is exactly the same as the qf parameter in
the first query we sent to Solr. Using it, we just specify the fields that we want to be searched
and their boosts. Next, we have the mmQuery parameter set to 1 that will be used as mm in
edismax, which means that a document will be considered a match when a single word
from the query will be found in it. As you will remember, the pfQuery parameter value will
be passed to the pf parameter, and thus the phrase query will be automatically made on
the fields defined in those fields.

Now, the last and probably the most important part of the query, the boostQuery parameter,
specifies the value that will be passed to the bq parameter. Our boost query is very similar to
our main query, however, we say that the query should only match the documents that have
all the words from the query (the mm=100% parameter). We also specify that the documents
that match that query should be boosted by adding the ^100000 part at the end of it.

To sum up all the parameters of our query, they will promote the documents with all the words
from the query present in the fields we want to search on. In addition to this, we will promote
the documents that have phrases matched. So finally, let's look at how the newly created
handler work. As you can see, when providing our query to it with the mainQuery parameter,
the previous document is now placed as the first one. So, we have achieved what we wanted.

How to boost documents based on their
publishing date

Imagine that you would like to place documents that are newer above the ones that are older.
For example, you have a book store and want to promote the books that have been published
recently, and place them above the books that have been present in our store for a long time.
Solr lets us do this, and this recipe will show you how.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

301

How to do it...
This recipe will show how we can boost documents based on their publishing date.

1.	 Let's begin with the following index structure (add it to the field section in your
schema.xml file):
<field name="id" type="string" indexed="true"
 stored="true" required="true" />
<field name="name" type="text" indexed="true"
 stored="true" />
<field name="published" type="date" indexed="true"
 stored="true" default="NOW" />

2.	 Now, let's index the following sample data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr 3.1 CookBook</field>
 <field name="published">2011-02-02T12:00:00Z</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Solr 4.0 CookBook</field>
 <field name="published">2012-10-01T12:00:00Z</field>
 </doc>
</add>

3.	 Now, let's run a simple query:
curl 'http://localhost:8983/solr/select?q=solr+cookbook&qf=name&de
fType=edismax'

For the preceding query, Solr will return the following results:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="qf">name</str>
 <str name="q">solr cookbook</str>
 <str name="defType">edismax</str>
 </lst>
 </lst>

www.it-ebooks.info

http://www.it-ebooks.info/

Real-life Situations

302

 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr 3.1 CookBook</str>
 <date name="published">2011-02-02T12:00:00Z</date>
 </doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Solr 4.0 CookBook</str>
 <date name="published">2012-10-01T12:00:00Z</date>
 </doc>
 </result>
</response>

4.	 As you can see, the newest document is the second one, which we want to avoid. So,
we need to change our query to the following one:
curl 'http://localhost:8983/solr/select?q=solr+cookbook&qf=name&bf
=recip(ms(NOW/HOUR,published),3.16e-11,1,1)defType=edismax'

Now, the response will be as follows:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="qf">name</str>
 <str name="bf">
 recip(ms(NOW/HOUR,published),3.16e-11,1,1)
 </str>
 <str name="q">solr cookbook</str>
 <str name="defType">edismax</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Solr 4.0 CookBook</str>
 <date name="published">2012-10-01T12:00:00Z</date>
 </doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Solr 3.1 CookBook</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

303

 <date name="published">2011-02-02T12:00:00Z</date>
 </doc>
 </result>
</response>

So, we have achieved what we wanted. Now, let's see how it works.

How it works...
Our index structure consists of three fields; one responsible for holding the identifier of the
document, one for the name of the document, and the last one; the one which we will be
most interested in, in which we hold the publishing date.

The published field has one nice feature – if we don't define it in the document and send
it for indexation, then it will get the value of the date and time when it is processed (the
default="NOW" attribute).

As you can see, the first query that we sent to Solr returned results not in a way we would
like them to be sorted. The most recent document is the second one. Of course, we could
have sorted them by date, but we don't want to do that, because we would like to have the
most recent and the most relevant documents at the top, not only the newest ones.

In order to achieve this, we use the bf (boost function) parameter. We specify the boosting
function. At first, it can look very complicated, but it's not. In order to boost our documents,
we use the recip(ms(NOW/HOUR,published),3.16e-11,1,1) function query. 3.16e10
specifies the number of milliseconds that are in a single year, so we use 3.16e-11 to invert
that, and we use the reciprocal function (recip) to calculate the scaling value, which will
return values near 1 for recent documents, 1/2 for documents from about a year, 1/3 for
documents that are about two years old, 1/4 for documents that are about three years old,
and so on.

We've also used NOW/HOUR to reduce the precision of the published field, in order for
our function query to consume less memory and because we don't need that granularity;
our results will be just fine.

As you can see, our query with the bf parameter and the time-based function query work
as intended.

There's more...
If you want to read more about function queries, please refer to the http://wiki.apache.
org/solr/FunctionQuery Solr wiki page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
-DnumShards parameter 213
-DzkHost parameter 213
-DzkRun parameter 213
<script> tag 55

A
add command 58
administration GUI, SolrCloud

cluster 220-223
adminPath property 17
adminPath variable 9
alphabetical order

faceting results, sorting in 168-170
analyzer 70
Apache Nutch

URL, for downloading 27
URL, for info 30

Apache Solr
URL, for tutorial 5

Apache Tika 36
Apache Tika library

used, for detecting language 66
Apache Tomcat

Solr, running on 10-13
URL 11

apt-get command 6, 8
automatic document distribution

stopping, among shards 230-234
autosuggest feature

implementing, faceting used 171-173
autowarmCount parameter 190, 193

B
binary files

metadata, extracting from 40-42
bqQuery parameter 300
buffer overflow 10

C
cache 22
caches, Solr

document 22, 26
filter 22, 25
query result 22, 26

CamelCase
used, for splitting text 80, 82

Catalina context file 12
category’s autocomplete functionality

implementing 287-289
working 289

CDATA tags 75
character filters 70
clientPort property 15
cluster

collections, setting up 214-216
replica count, increasing 227-230

collections
setting up, in cluster 214-216

commit command 295
commit operation

about 200
Solr performance, improving after 194-196

conf directory 13
config-file 120
configuration, document cache 189, 190

www.it-ebooks.info

http://www.it-ebooks.info/

306

configuration, filter cache 192, 193
configuration, query result cache 191, 192
configuration, Solr cache

about 23, 24
document cache 26
filter cache 25
filter cache, using with faceting 25
no cache hits 25
query result cache 26
query result window 26

configuration, spellchecker 19, 21
content

copying, of dynamic fields 77
copying, of fields 75-77

context directory 6
contrib modules 62
crawl command 29
crawl-urlfilter.txt file 29
CSV 30
curl command 37
currencyConfig attribute 61
currencyExchange.xml file 61
currency provider

setting up 62

D
data

clustering 15, 17
importing, Data Import Handler used 48-50
indexing, Data Import Handler used 45-48
modifying, in Data Import Handler 53-55
searching, in near real-time manner 294-296
stemming 91-93

data analysis 70
data behavior 70
data-config.xml file 52
dataDir property 15
Data Import Handler

about 42
configuring, with JDBC 42-44
data, modifying 53-55
used, for importing data 48-50
used, for indexing data from database 45-48
using, with URL data source 50, 51

data indexing 70
db-data-config.xml file 43

debug attribute 12
decision tree faceting

using 180-183
defaultCoreName attribute 9, 13
defaultCurrency attribute 61
default HTML tags

modifying 241
default similarity implementation

modifying 32-34
defined words

ignoring 248-250
defType parameter 116
delete operation 216
different query parsers

using, in single query 290, 291
directoryFactory tag 18
directory implementation

selecting 17-19
DirectSolrSpellChecker 256
DisMax query parser

about 116, 122
used, for querying particular value 109

distance
defining, between words in phrase 114

distributed indexing 223-226
docBase attribute 12
document

language, detecting 62-66
single field, updating 56-58

document cache
about 22, 26, 189
configuring 189, 190

document count
getting, by query match 161-164
getting, by subquery match 161-164
getting, without value in field 174-176
getting, with same field value 156-158
getting, with same value range 158-161

document language
detecting 62-66
detecting, Apache Tika library used 66

documents
boosting, based on publishing date 301-303
default HTML tags, modifying 241
excluding, with

QueryElevationComponent 121
faceting, calculating for 183-186

www.it-ebooks.info

http://www.it-ebooks.info/

307

getting right, after indexation 292, 293
getting, with all query words at top

results set 296-300
modifying 136-138
positioning, over others on query 117-121
positioning, with closer words 122-125
retrieving, with partial match 128-130

DoubleMetaphoneFilterFactory 247
duplicate documents

detecting 145-148
omitting 145-148

dynamic fields
content, copying of 77

E
elevate.xml file 139
embedded ZooKeeper server

starting 213
enablePositionIncrements parameter 250
entities 44
Extended DisMax query parser

parameters 299
using 290, 299

extracting request handler
setting up 30, 31

F
faceting

about 155
calculating, for relevant documents

in groups 183-186
filter cache, using with 25
used, for implementing

autosuggest feature 171-173
faceting method per field

specifying 200
faceting performance

improving, for low cardinality fields 198, 199
faceting results

filters, removing from 164-167
lexicographical sorting 158
sorting, in alphabetical order 168-170

facet limits
for different fields, in same query 177-180

FastVectorHighlighting feature 243

field
updating, of document 56-58

field aliases
using 148-150

fields
content, copying of 75-77
specifying, for highlighting 241

field value
used, for grouping results 257-259
used, for sorting results 109-111

file data source 50
filter cache

about 22, 25, 192
configuring 192, 193
using, with faceting 25

filter caching
avoiding 206

filter queries
order of execution, controlling for 207, 208

filters
removing, from faceting results 164-167

flexible indexing 68
function queries

used, for grouping results 262, 263
functions

scoring, affecting with 130-34
function value

used, for sorting results 243-245

G
Gangila

URL 188
generateNumberParts parameter 98
generateWordParts parameter 98
geodist function 245
geographical points

storing, in index 88-91
global similarity

configuring 34

H
hash value 227
highlighting

fields, specifying for 241
HTML tags

eliminating, from text 73-75

www.it-ebooks.info

http://www.it-ebooks.info/

308

HttpDataSource 52
Hunspell

about 99
using, as stemmer 99, 100

I
ignoreCase attribute 79
ignored.txt file 248
index

geographical points, storing in 88-91
making, smaller 272, 273

indexing 35
index size

estimating 274
information

storing, payloads used 70-73
initialSize parameter 190
initLimit property 15
installation, ZooKeeper 14, 15
instanceDir attribute 9
issues, Apache Tomcat

Apache Tomcat, running on different port 13
issues, Jetty servlet container

buffer overflow 10
Jetty, running on different port 9

J
Java 6 55
java command 8, 9
JDBC

Data Import Handler, configuring with 42-44
Jetty

Solr, running on 6-9
Jetty servlet container

URL, for downloading 6
jetty.xml file 7, 10
JSON 30

L
language attribute 55
lexicographical sorting, faceting results 158
light stemming 86
logging.properties file 7

low cardinality fields
faceting performance, improving for 198, 199

Lucene directory implementation 17
LuceneQParser query parser 240
Lucene’s internal cache 23

M
matched words

highlighing 238-240
maxChars attribute 77
mergeFactor parameter 267
metadata

extracting, from binary files 40-42
mmQuery parameter

about 299
multiple currencies

configuring 59-61
handling 59
using 59-61

multiple values
querying for 109

N
n-grams

about 95
used, for handling user typos.. 142-145

non-English languages
sorting, properly 268-271

non-whitespace characters
used, for splitting text 96-98

numbers
used, for splitting text 96-98

numerical range queries
performance, improving 208, 209

O
opened files

dealing with 265-267
order of execution

controlling, of filter queries 207, 208
OR operator 122
out-of-memory issues

dealing with 267, 268

www.it-ebooks.info

http://www.it-ebooks.info/

309

P
parameter dereferencing 136
parameters, Extended DisMax query parser

bq 300
mm 299
pf 300
qf 299
v 300

parent-child relationships
about 139
using 140, 141

partial match
documents, retrieving with 128-130

particular field value
asking for 108

particular value
querying, DisMax query parser used 109

path attribute 12
payload

about 70
used, for storing information 70-73

PDFCreator 36
PDF files

indexing 36-38
performance

about 187
improving, of numerical range

queries 208, 209
pfQuery parameter 300
phrase

searching for 111-113
phrases

boosting, over words 114-116
boosting, with standard query parser 117

phrase slop 114
pivot faceting 180
plural words

singular, making 84-86
PostgreSQL 50
primary key 67
primary key field indexing

optimizing 67, 68
product’s autocomplete functionality

implementing 284, 285
working 286, 287

Q
qfQuery parameter 299
queries

nesting 134-136
used, for grouping results 260-262

queryAnalyzerFieldType property 21
QueryElevationComponent

document, excluding with 121
queryFieldType attribute 120
query parser 291
query performance

analyzing 202-205
query result cache

about 22, 26, 190
configuring 191, 192

queryResultMaxDocsCached property 189
query results

paging 188, 189
query result window 26
queryResultWindowSize property 188

R
real-time get 292
reload operation 216
replicas

increasing, on live cluster 227-230
replication 227
result pages

caching 197, 198
results

grouping, field values used 257-259
grouping, function queries used 262-263
grouping, queries used 260-262
sorting, by distance from point 125-128
sorting, by field value 109-111
sorting, by function value 243-245
value of function, returning in 151-153

S
Scalable Performance Monitoring 25, 188
schema.xml file 7, 29, 38, 52, 84, 133
scoring

affecting, with functions 130-134
searching 223-226

www.it-ebooks.info

http://www.it-ebooks.info/

310

search results
used, for computing statistics 250-253

Sematext
about 25
URL 188

server.xml file 11
similar documents

returning 236-238
softCommit command 17
Solr

about 36, 99
indexing, issues 200-202
performance, improving after commit

operation 194-196
performance, improving after startup

operation 194-196
result pages, caching 197, 198
running, on Apache Tomcat 10-12
running, on Jetty 6-9

Solr 4.0 211
Solr cache

configuring 23, 24
SolrCloud

about 211
automatic document distribution, stopping

among shards 230-234
collections, setting up in cluster 214-216
distributed indexing 223-226
replicas, increasing on live cluster 227-230
searching 223-226

SolrCloud cluster
about 211
administration GUI 220-223
creating 212
managing 216, 217-219
working 213

solrconfig.xml file 7, 16, 19, 52, 188
solr.DFRSimilarityFactory 34
solr.DirectSolrSpellchecker 19
solr.DirectSolrSpellChecker 21
Solr issues

diagnosing 274-279
solr.MMapDirectoryFactory 18
solr.NIOFSDirectoryFactory 18
solr.NRTCachingDirectoryFactory 19
solr.QueryElevationComponent 117
solr.RAMDirectoryFactory 19

solr.RealTimeGetHandler class 294
solr.SchemaSimilarityFactory 34
solr.SimpleFSDirectoryFactory 18
solr.StandardDirectoryFactory 18
solr.UUIDField 39
solr.war file 6, 8
Solr wiki page 303
solr.xml file 6-13
sounds

used, for searching words 246, 247
spellchecker

about 19
configuring 19, 21

spellchecker component
about 253
using 254-256

spelling mistakes
checking, of user 253-256

splitOnNumerics parameter 98
standard query parser

phrases, boosting with 117
startup operation

Solr performance, improving after 194-196
statistics

computing, for search results 250-253
StatsComponent 252
stemmer

Hunspell, using as 99, 100
stemming

about 91
words, protecting from 103-106

stemming algorithms 84
stemming dictionary

using 101-103
StopFilterFactory 250
string

lowercasing 87, 88
swapping

avoiding 280-282
syncLimit property 15
synonyms attribute 79
synonyms.txt file 78

T
temp directory 6
termVectors attribute 238

www.it-ebooks.info

http://www.it-ebooks.info/

311

text
HTML tags, eliminating from 73-75
preparing, for wildcard search 93-95
splitting, by CamelCase 80-82
splitting, by non-whitespace characters 96-98
splitting, by numbers 96-98
splitting, by whitespace 82-84
XML tags, eliminating from 73-75

text fields
highlighting 241-243

tickTime property 15
Tika 31
tokenizer 70
tokens 70
transformer 52
types 70
typos

handling, ngrams used 142-145
ignoring, in performance wise way 142-145

U
unique fields

generating, automatically 38, 39
URL data source

Data Import Handler, using with 50-53
UTF-8 file encoding 12

V
value of function

returning, in results 151-153
vQuery parameter 300

W
webapps directory 6
webdefault.xml file 7
web pages

fetching 27-29
indexing 27-29

whitespace
used, for splitting text 82-84

wildcard search
text, preparing for 93-95

words
modifying 77-79
phrases, boosting over 114-116
protecting, from stemming 103-106
searching, by sound 246, 247

X
XML 30
XML tags

eliminating, from text 73-75
XPath expression 52

Z
ZooKeeper

about 14
installing 14, 15
URL, for downloading 14

ZooKeeper cluster 212

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

Apache Solr 4 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr 3 Enterprise
Search Server
ISBN: 978-1-84951-606-8 Paperback: 418 pages

Enhance your search with faceted navigation, result
highlighting relevancy ranked sorting, and more

1.	 Comprehensive information on Apache Solr
3 with examples and tips so you can focus
on the important parts

2.	 Integration examples with databases,
web-crawlers, XSLT, Java & embedded-Solr,
PHP & Drupal, JavaScript, Ruby frameworks

3.	 Advice on data modeling, deployment
considerations to include security, logging,
and monitoring, and advice on scaling Solr
and measuring performance

HBase Administration
Cookbook
ISBN: 978-1-84951-714-0 Paperback: 332 pages

Master HBase configuration and administration for
optimum database performance

1.	 Move large amounts of data into HBase
and learn how to manage it efficiently

2.	 Set up HBase on the cloud, get it ready
for production, and run it smoothly with
high performance

3.	 Maximize the ability of HBase with the
Hadoop eco-system including HDFS,
MapReduce, Zookeeper, and Hive

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Hadoop Real World Solutions
Cookbook
ISBN: 978-1-84951-912-0 Paperback: 325 pages

Realistic, simple code examples to solve problems at
scale with Hadoop and related technologies

1.	 Solutions to common problems when working
in the Hadoop environment

2.	 Recipes for (un)loading data, analytics, and
troubleshooting

3.	 In depth code examples demonstrating various
analytic models, analytic solutions, and common
best practices

Cassandra High Performance
Cookbook
ISBN: 978-1-84951-512-2 Paperback: 310 pages

Over 150 recipes to design and optimize large-scale
Apache Cassandra deployments

1.	 Get the best out of Cassandra using this efficient
recipe bank

2.	 Configure and tune Cassandra components to
enhance performance

3.	 Deploy Cassandra in various environments and
monitor its performance

4.	 Well illustrated, step-by-step recipes to make all
tasks look easy!

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Apache Solr Configuration
	Introduction
	Running Solr on Jetty
	Running Solr on Apache Tomcat
	Installing a standalone ZooKeeper
	Clustering your data
	Choosing the right directory implementation
	Configuring spellchecker to not use its own index
	Solr cache configuration
	How to fetch and index web pages
	How to set up the extracting request handler
	Changing the default similarity implementation

	Chapter 2: Indexing Your Data
	Introduction
	Indexing PDF files
	Generating unique fields automatically
	Extracting metadata from binary files
	How to properly configure Data Import Handler with JDBC
	Indexing data from a database using Data Import Handler
	How to import data using Data Import Handler and delta query
	How to use Data Import Handler with the URL data source
	How to modify data while importing with Data Import Handler
	Updating a single field of your document
	Handling multiple currencies
	Detecting the document's language
	Optimizing your primary key field indexing

	Chapter 3: Analyzing Your Text Data
	Introduction
	Storing additional information using payloads
	Eliminating XML and HTML tags from text
	Copying the contents of one field to another
	Changing words to other words
	Splitting text by CamelCase
	Splitting text by whitespace only
	Making plural words singular without stemming
	Lowercasing the whole string
	Storing geographical points in the index
	Stemming your data
	Preparing text to perform an efficient trailing wildcard search
	Splitting text by numbers and
non-whitespace characters
	Using Hunspell as a stemmer
	Using your own stemming dictionary
	Protecting words from being stemmed

	Chapter 4: Querying Solr
	Introduction
	Asking for a particular field value
	Sorting results by a field value
	How to search for a phrase, not a single word
	Boosting phrases over words
	Positioning some documents over others on a query
	Positioning documents with words closer to each other first
	Sorting results by a distance from a point
	Getting documents with only a partial match
	Affecting scoring with functions
	Nesting queries
	Modifying returned documents
	Using parent-child relationships
	Ignoring typos in terms of performance
	Detecting and omitting duplicate documents
	Using field aliases
	Returning a value of a function in the results

	Chapter 5
: Using the Faceting Mechanism
	Introduction
	Getting the number of documents with the same field value
	Getting the number of documents with the same value range
	Getting the number of documents matching the query and subquery
	Removing filters from faceting results
	Sorting faceting results in alphabetical order
	Implementing the autosuggest feature using faceting
	Getting the number of documents that don't have a value in the field
	Having two different facet limits for two different fields in the same query
	Using decision tree faceting
	Calculating faceting for relevant documents in groups

	Chapter 6: Improving Solr Performance
	Introduction
	Paging your results quickly
	Configuring the document cache
	Configuring the query result cache
	Configuring the filter cache
	Improving Solr performance right after the startup or commit operation
	Caching whole result pages
	Improving faceting performance for low cardinality fields
	What to do when Solr slows down during indexing
	Analyzing query performance
	Avoiding filter caching
	Controlling the order of execution of filter queries
	Improving the performance of numerical range queries

	Chapter 7: In the Cloud
	Introduction
	Creating a new SolrCloud cluster
	Setting up two collections inside a single cluster
	Managing your SolrCloud cluster
	Understanding the SolrCloud cluster administration GUI
	Distributed indexing and searching
	Increasing the number of replicas on an already live cluster
	Stopping automatic document distribution among shards

	Chapter 8
: Using Additional Solr Functionalities
	Introduction
	Getting more documents similar to those returned in the results list
	Highlighting matched words
	How to highlight long text fields and get good performance
	Sorting results by a function value
	Searching words by how they sound
	Ignoring defined words
	Computing statistics for the search results
	Checking the user's spelling mistakes
	Using field values to group results
	Using queries to group results
	Using function queries to group results

	Chapter 9: Dealing with Problems
	Introduction
	How to deal with too many opened files
	How to deal with out-of-memory problems
	How to sort non-English languages properly
	How to make your index smaller
	Diagnosing Solr problems
	How to avoid swapping

	Appendix: Real-life Situations
	Introduction
	How to implement a product's autocomplete functionality
	How to implement a category's autocomplete functionality
	How to use different query parsers in a single query
	How to get documents right after they were sent for indexation
	How to search your data in a near real-time manner
	How to get the documents with all the query words to the top of the results set
	How to boost documents based on their publishing date

	Index

