
Linear regression

• Linear regression is a simple approach to supervised
learning. It assumes that the dependence of Y on
X1, X2, . . . Xp is linear.

• True regression functions are never linear!
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Linearity assumption?

η(x) = β0 + β1x1 + β2x2 + . . . βpxp

Almost always thought of as an approximation to the truth.

Functions in nature are rarely linear.
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• although it may seem overly simplistic, linear regression is
extremely useful both conceptually and practically.
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Linear regression for the advertising data

Consider the advertising data shown on the next slide.

Questions we might ask:

• Is there a relationship between advertising budget and
sales?

• How strong is the relationship between advertising budget
and sales?

• Which media contribute to sales?

• How accurately can we predict future sales?

• Is the relationship linear?

• Is there synergy among the advertising media?
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Advertising data
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Simple linear regression using a single predictor X.

• We assume a model

Y = β0 + β1X + ε,

where β0 and β1 are two unknown constants that represent
the intercept and slope, also known as coefficients or
parameters, and ε is the error term.

• Given some estimates β̂0 and β̂1 for the model coefficients,
we predict future sales using

ŷ = β̂0 + β̂1x,

where ŷ indicates a prediction of Y on the basis of X = x.
The hat symbol denotes an estimated value.
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Estimation of the parameters by least squares
• Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith

value of X. Then ei = yi − ŷi represents the ith residual

• We define the residual sum of squares (RSS) as

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1−β̂0−β̂1x1)2+(y2−β̂0−β̂1x2)2+. . .+(yn−β̂0−β̂1xn)2.

• The least squares approach chooses β̂0 and β̂1 to minimize
the RSS. The minimizing values can be shown to be

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,
where ȳ ≡ 1

n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample

means.
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β̂0 = ȳ − β̂1x̄,
where ȳ ≡ 1
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Example: advertising data

4 3. Linear Regression

between the ith observed response value and the ith response value that is
predicted by our linear model. We define the residual sum of squares (RSS)

residual sum of
squaresas

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ . . .+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to this

The least squares fit for the regression of sales onto TV.
In this case a linear fit captures the essence of the relationship,
although it is somewhat deficient in the left of the plot.
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Assessing the Accuracy of the Coefficient Estimates

• The standard error of an estimator reflects how it varies
under repeated sampling. We have

SE(β̂1)
2

=
σ2∑n

i=1(xi − x̄)2
, SE(β̂0)

2
= σ2

[
1

n
+

x̄2∑n
i=1(xi − x̄)2

]
,

where σ2 = Var(ε)

• These standard errors can be used to compute confidence
intervals. A 95% confidence interval is defined as a range of
values such that with 95% probability, the range will
contain the true unknown value of the parameter. It has
the form

β̂1 ± 2 · SE(β̂1).
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Confidence intervals — continued

That is, there is approximately a 95% chance that the interval

[
β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)

]

will contain the true value of β1 (under a scenario where we got
repeated samples like the present sample)

For the advertising data, the 95% confidence interval for β1 is
[0.042, 0.053]
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Hypothesis testing

• Standard errors can also be used to perform hypothesis
tests on the coefficients. The most common hypothesis test
involves testing the null hypothesis of

H0 : There is no relationship between X and Y

versus the alternative hypothesis

HA : There is some relationship between X and Y .

• Mathematically, this corresponds to testing

H0 : β1 = 0

versus
HA : β1 6= 0,

since if β1 = 0 then the model reduces to Y = β0 + ε, and
X is not associated with Y .
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Hypothesis testing — continued

• To test the null hypothesis, we compute a t-statistic, given
by

t =
β̂1 − 0

SE(β̂1)
,

• This will have a t-distribution with n− 2 degrees of
freedom, assuming β1 = 0.

• Using statistical software, it is easy to compute the
probability of observing any value equal to |t| or larger. We
call this probability the p-value.
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Results for the advertising data

Coefficient Std. Error t-statistic p-value

Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001
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Assessing the Overall Accuracy of the Model

• We compute the Residual Standard Error

RSE =

√
1

n− 2
RSS =

√√√√ 1

n− 2

n∑

i=1

(yi − ŷi)2,

where the residual sum-of-squares is RSS =
∑n

i=1(yi− ŷi)2.

• R-squared or fraction of variance explained is

R2 =
TSS− RSS

TSS
= 1− RSS

TSS

where TSS =
∑n

i=1(yi − ȳ)2 is the total sum of squares.

• It can be shown that in this simple linear regression setting
that R2 = r2, where r is the correlation between X and Y :

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
.
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Advertising data results

Quantity Value

Residual Standard Error 3.26
R2 0.612
F-statistic 312.1
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Multiple Linear Regression

• Here our model is

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε,

• We interpret βj as the average effect on Y of a one unit
increase in Xj , holding all other predictors fixed. In the
advertising example, the model becomes

sales = β0 + β1 × TV + β2 × radio + β3 × newspaper + ε.
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Interpreting regression coefficients

• The ideal scenario is when the predictors are uncorrelated
— a balanced design:

- Each coefficient can be estimated and tested separately.
- Interpretations such as “a unit change in Xj is associated

with a βj change in Y , while all the other variables stay
fixed”, are possible.

• Correlations amongst predictors cause problems:

- The variance of all coefficients tends to increase, sometimes
dramatically

- Interpretations become hazardous — when Xj changes,
everything else changes.

• Claims of causality should be avoided for observational
data.
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The woes of (interpreting) regression coefficients

“Data Analysis and Regression” Mosteller and Tukey 1977

• a regression coefficient βj estimates the expected change in
Y per unit change in Xj , with all other predictors held
fixed. But predictors usually change together!

• Example: Y total amount of change in your pocket;
X1 = # of coins; X2 = # of pennies, nickels and dimes. By
itself, regression coefficient of Y on X2 will be > 0. But
how about with X1 in model?

• Y= number of tackles by a football player in a season; W
and H are his weight and height. Fitted regression model
is Ŷ = b0 + .50W − .10H. How do we interpret β̂2 < 0?
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Two quotes by famous Statisticians

“Essentially, all models are wrong, but some are useful”

George Box

“The only way to find out what will happen when a complex
system is disturbed is to disturb the system, not merely to
observe it passively”

Fred Mosteller and John Tukey, paraphrasing George Box
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Estimation and Prediction for Multiple Regression

• Given estimates β̂0, β̂1, . . . β̂p, we can make predictions
using the formula

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp.

• We estimate β0, β1, . . . , βp as the values that minimize the
sum of squared residuals

RSS =

n∑

i=1

(yi − ŷi)2

=

n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂pxip)2.

This is done using standard statistical software. The values
β̂0, β̂1, . . . , β̂p that minimize RSS are the multiple least
squares regression coefficient estimates.
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3.2 Multiple Linear Regression 15

X1

X2

Y

FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The parameters are estimated using the same least squares approach that
we saw in the context of simple linear regression. We choose β0, β1, . . . , βp

to minimize the sum of squared residuals

RSS =

n∑

i=1

(yi − ŷi)
2

=
n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂pxip)
2. (3.22)

The values β̂0, β̂1, . . . , β̂p that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression esti-
mates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.
Table 3.4 displays the multiple regression coefficient estimates when TV,

radio, and newspaper advertising budgets are used to predict product sales
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Results for advertising data

Coefficient Std. Error t-statistic p-value

Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper -0.001 0.0059 -0.18 0.8599

Correlations:
TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000
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Some important questions

1. Is at least one of the predictors X1, X2, . . . , Xp useful in
predicting the response?

2. Do all the predictors help to explain Y , or is only a subset
of the predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should
we predict, and how accurate is our prediction?

21 / 48



Some important questions

1. Is at least one of the predictors X1, X2, . . . , Xp useful in
predicting the response?

2. Do all the predictors help to explain Y , or is only a subset
of the predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should
we predict, and how accurate is our prediction?

21 / 48



Some important questions

1. Is at least one of the predictors X1, X2, . . . , Xp useful in
predicting the response?

2. Do all the predictors help to explain Y , or is only a subset
of the predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should
we predict, and how accurate is our prediction?

21 / 48



Some important questions

1. Is at least one of the predictors X1, X2, . . . , Xp useful in
predicting the response?

2. Do all the predictors help to explain Y , or is only a subset
of the predictors useful?

3. How well does the model fit the data?

4. Given a set of predictor values, what response value should
we predict, and how accurate is our prediction?

21 / 48



Is at least one predictor useful?

For the first question, we can use the F-statistic

F =
(TSS− RSS)/p

RSS/(n− p− 1)
∼ Fp,n−p−1

Quantity Value

Residual Standard Error 1.69
R2 0.897
F-statistic 570
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Deciding on the important variables

• The most direct approach is called all subsets or best
subsets regression: we compute the least squares fit for all
possible subsets and then choose between them based on
some criterion that balances training error with model size.

• However we often can’t examine all possible models, since
they are 2p of them; for example when p = 40 there are
over a billion models!
Instead we need an automated approach that searches
through a subset of them. We discuss two commonly use
approaches next.
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Forward selection

• Begin with the null model — a model that contains an
intercept but no predictors.

• Fit p simple linear regressions and add to the null model
the variable that results in the lowest RSS.

• Add to that model the variable that results in the lowest
RSS amongst all two-variable models.

• Continue until some stopping rule is satisfied, for example
when all remaining variables have a p-value above some
threshold.
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Backward selection

• Start with all variables in the model.

• Remove the variable with the largest p-value — that is, the
variable that is the least statistically significant.

• The new (p− 1)-variable model is fit, and the variable with
the largest p-value is removed.

• Continue until a stopping rule is reached. For instance, we
may stop when all remaining variables have a significant
p-value defined by some significance threshold.
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Model selection — continued

• Later we discuss more systematic criteria for choosing an
“optimal” member in the path of models produced by
forward or backward stepwise selection.

• These include Mallow’s Cp, Akaike information criterion
(AIC), Bayesian information criterion (BIC), adjusted R2

and Cross-validation (CV).
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Other Considerations in the Regression Model

Qualitative Predictors

• Some predictors are not quantitative but are qualitative,
taking a discrete set of values.

• These are also called categorical predictors or factor
variables.

• See for example the scatterplot matrix of the credit card
data in the next slide.

In addition to the 7 quantitative variables shown, there are
four qualitative variables: gender, student (student
status), status (marital status), and ethnicity

(Caucasian, African American (AA) or Asian).
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Credit Card Data
26 3. Linear Regression

Balance
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FIGURE 3.6. The Credit data set contains information about balance, age,
cards, education, income, limit, and rating for a number of potential cus-
tomers.

and use this variable as a predictor in the regression equation. This results
in the model

yi = β0 + β1xi + ǫi =

{
β0 + β1 + ǫi if ith person is female

β0 + ǫi if ith person is male.
(3.27)

Now β0 can be interpreted as the average credit card balance among males,
β0 + β1 as the average credit card balance among females, and β1 as the
average difference in credit card balance between females and males.
Table 3.7 displays the coefficient estimates and other information asso-

ciated with the model (3.27). The average credit card debt for males is
estimated to be $509.80, whereas females are estimated to carry $19.73 in
additional debt for a total of $509.80 + $19.73 = $529.53. However, we
notice that the p-value for the dummy variable is very high. This indicates
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Qualitative Predictors — continued

Example: investigate differences in credit card balance between
males and females, ignoring the other variables. We create a
new variable

xi =

{
1 if ith person is female

0 if ith person is male

Resulting model:

yi = β0 + β1xi + εi =

{
β0 + β1 + εi if ith person is female

β0 + εi if ith person is male.

Intrepretation?
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Credit card data — continued

Results for gender model:

Coefficient Std. Error t-statistic p-value

Intercept 509.80 33.13 15.389 < 0.0001
gender[Female] 19.73 46.05 0.429 0.6690
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Qualitative predictors with more than two levels

• With more than two levels, we create additional dummy
variables. For example, for the ethnicity variable we
create two dummy variables. The first could be

xi1 =

{
1 if ith person is Asian

0 if ith person is not Asian,

and the second could be

xi2 =

{
1 if ith person is Caucasian

0 if ith person is not Caucasian.
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Qualitative predictors with more than two levels —
continued.

• Then both of these variables can be used in the regression
equation, in order to obtain the model

yi = β0+β1xi1+β2xi2+εi =


β0 + β1 + εi if ith person is Asian

β0 + β2 + εi if ith person is Caucasian

β0 + εi if ith person is AA.

• There will always be one fewer dummy variable than the
number of levels. The level with no dummy variable —
African American in this example — is known as the
baseline.
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Results for ethnicity

Coefficient Std. Error t-statistic p-value

Intercept 531.00 46.32 11.464 < 0.0001
ethnicity[Asian] -18.69 65.02 -0.287 0.7740
ethnicity[Caucasian] -12.50 56.68 -0.221 0.8260
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Extensions of the Linear Model

Removing the additive assumption: interactions and
nonlinearity

Interactions:

• In our previous analysis of the Advertising data, we
assumed that the effect on sales of increasing one
advertising medium is independent of the amount spent on
the other media.

• For example, the linear model

ŝales = β0 + β1 × TV + β2 × radio + β3 × newspaper

states that the average effect on sales of a one-unit
increase in TV is always β1, regardless of the amount spent
on radio.
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Interactions — continued

• But suppose that spending money on radio advertising
actually increases the effectiveness of TV advertising, so
that the slope term for TV should increase as radio

increases.

• In this situation, given a fixed budget of $100, 000,
spending half on radio and half on TV may increase sales

more than allocating the entire amount to either TV or to
radio.

• In marketing, this is known as a synergy effect, and in
statistics it is referred to as an interaction effect.
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Interaction in the Advertising data?
3.2 Multiple Linear Regression 81

Sales

Radio

TV

FIGURE 3.5. For the Advertising data, a linear regression fit to sales using
TV and radio as predictors. From the pattern of the residuals, we can see that
there is a pronounced non-linear relationship in the data.

which simplifies to (3.15) for a simple linear regression. Thus, models with
more variables can have higher RSE if the decrease in RSS is small relative
to the increase in p.
In addition to looking at the RSE and R2 statistics just discussed, it can

be useful to plot the data. Graphical summaries can reveal problems with
a model that are not visible from numerical statistics. For example, Fig-
ure 3.5 displays a three-dimensional plot of TV and radio versus sales. We
see that some observations lie above and some observations lie below the
least squares regression plane. Notice that there is a clear pattern of nega-
tive residuals, followed by positive residuals, followed by negative residuals.
In particular, the linear model seems to overestimate sales for instances
in which most of the advertising money was spent exclusively on either
TV or radio. It underestimates sales for instances where the budget was
split between the two media. This pronounced non-linear pattern cannot be
modeled accurately using linear regression. It suggests a synergy or inter-
action effect between the advertising media, whereby combining the media
together results in a bigger boost to sales than using any single medium. In
Section 3.3.2, we will discuss extending the linear model to accommodate
such synergistic effects through the use of interaction terms.

When levels of either TV or radio are low, then the true sales

are lower than predicted by the linear model.
But when advertising is split between the two media, then the
model tends to underestimate sales.
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Modelling interactions — Advertising data

Model takes the form

sales = β0 + β1 × TV + β2 × radio + β3 × (radio× TV) + ε

= β0 + (β1 + β3 × radio)× TV + β2 × radio + ε.

Results:

Coefficient Std. Error t-statistic p-value

Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TV×radio 0.0011 0.000 20.73 < 0.0001
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Interpretation

• The results in this table suggests that interactions are
important.

• The p-value for the interaction term TV×radio is
extremely low, indicating that there is strong evidence for
HA : β3 6= 0.

• The R2 for the interaction model is 96.8%, compared to
only 89.7% for the model that predicts sales using TV and
radio without an interaction term.
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Interpretation — continued

• This means that (96.8− 89.7)/(100− 89.7) = 69% of the
variability in sales that remains after fitting the additive
model has been explained by the interaction term.

• The coefficient estimates in the table suggest that an
increase in TV advertising of $1, 000 is associated with
increased sales of
(β̂1 + β̂3 × radio)× 1000 = 19 + 1.1× radio units.

• An increase in radio advertising of $1, 000 will be
associated with an increase in sales of
(β̂2 + β̂3 × TV)× 1000 = 29 + 1.1× TV units.
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Hierarchy

• Sometimes it is the case that an interaction term has a
very small p-value, but the associated main effects (in this
case, TV and radio) do not.

• The hierarchy principle:

If we include an interaction in a model, we should also
include the main effects, even if the p-values associated
with their coefficients are not significant.
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Hierarchy — continued

• The rationale for this principle is that interactions are hard
to interpret in a model without main effects — their
meaning is changed.

• Specifically, the interaction terms also contain main effects,
if the model has no main effect terms.
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Interactions between qualitative and quantitative
variables

Consider the Credit data set, and suppose that we wish to
predict balance using income (quantitative) and student

(qualitative).

Without an interaction term, the model takes the form

balancei ≈ β0 + β1 × incomei +

{
β2 if ith person is a student

0 if ith person is not a student

= β1 × incomei +

{
β0 + β2 if ith person is a student

β0 if ith person is not a student.
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With interactions, it takes the form

balancei ≈ β0 + β1 × incomei +

{
β2 + β3 × incomei if student

0 if not student

=

{
(β0 + β2) + (β1 + β3) × incomei if student

β0 + β1 × incomei if not student
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90 3. Linear Regression
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FIGURE 3.7. For the Credit data, the least squares lines are shown for pre-
diction of balance from income for students and non-students. Left: The model
(3.34) was fit. There is no interaction between income and student. Right: The
model (3.35) was fit. There is an interaction term between income and student.

takes the form

balancei ≈ β0 + β1 × incomei +

{
β2 if ith person is a student

0 if ith person is not a student

= β1 × incomei +

{
β0 + β2 if ith person is a student

β0 if ith person is not a student.

(3.34)

Notice that this amounts to fitting two parallel lines to the data, one for
students and one for non-students. The lines for students and non-students
have different intercepts, β0 + β2 versus β0, but the same slope, β1. This
is illustrated in the left-hand panel of Figure 3.7. The fact that the lines
are parallel means that the average effect on balance of a one-unit increase
in income does not depend on whether or not the individual is a student.
This represents a potentially serious limitation of the model, since in fact a
change in income may have a very different effect on the credit card balance
of a student versus a non-student.
This limitation can be addressed by adding an interaction variable, cre-

ated by multiplying income with the dummy variable for student. Our
model now becomes

balancei ≈ β0 + β1 × incomei +

{
β2 + β3 × incomei if student

0 if not student

=

{
(β0 + β2) + (β1 + β3)× incomei if student

β0 + β1 × incomei if not student

(3.35)

Once again, we have two different regression lines for the students and
the non-students. But now those regression lines have different intercepts,

Credit data; Left: no interaction between income and student.
Right: with an interaction term between income and student.
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Non-linear effects of predictors
polynomial regression on Auto data

3.3 Other Considerations in the Regression Model 91
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FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are
shown. The linear regression fit is shown in orange. The linear regression fit for
a model that includes horsepower2 is shown as blue curve. The linear regression
fit for a model that includes all polynomials of horsepower up to fifth-degree is
shown in green.

β0+β2 versus β0, as well as different slopes, β1+β3 versus β1. This allows for
the possibility that changes in income may affect the credit card balances
of students and non-students differently. The right-hand panel of Figure 3.7
shows the estimated relationships between income and balance for students
and non-students in the model (3.35). We note that the slope for students
is lower than the slope for non-students. This suggests that increases in
income are associated with smaller increases in credit card balance among
students as compared to non-students.

Non-Linear Relationships

As discussed previously, the linear regression model (3.19) assumes a linear
relationship between the response and predictors. But in some cases, the
true relationship between the response and the predictors may be non-
linear. Here we present a very simple way to directly extend the linear model
to accommodate non-linear relationships, using polynomial regression. In

polynomial
regressionlater chapters, we will present more complex approaches for performing

non-linear fits in more general settings.
Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon)

versus horsepower is shown for a number of cars in the Auto data set. The
orange line represents the linear regression fit. There is a pronounced rela-
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The figure suggests that

mpg = β0 + β1 × horsepower + β2 × horsepower2 + ε

may provide a better fit.

Coefficient Std. Error t-statistic p-value

Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower -0.4662 0.0311 -15.0 < 0.0001
horsepower2 0.0012 0.0001 10.1 < 0.0001
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What we did not cover

Outliers
Non-constant variance of error terms
High leverage points
Collinearity

See text Section 3.33
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Generalizations of the Linear Model

In much of the rest of this course, we discuss methods that
expand the scope of linear models and how they are fit:

• Classification problems: logistic regression, support vector
machines

• Non-linearity: kernel smoothing, splines and generalized
additive models; nearest neighbor methods.

• Interactions: Tree-based methods, bagging, random forests
and boosting (these also capture non-linearities)

• Regularized fitting: Ridge regression and lasso
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