
RWUI: A WEB APPLICATION TO CREATE USER FRIENDLY WEB INTERFACES FOR R SCRIPTS

Rwui: A web application to create user
friendly web interfaces for R scripts
by R. Newton and L. Wernisch

Summary

Rwui is used to create web applications for running
R scripts. All the code for the web application is gen-
erated automatically so that a fully functional web
interface for an R script can be downloaded and up
and running in a matter of minutes.

Although of general applicability, Rwui is de-
signed primarily with bioinformatics applications in
mind; aimed at bioinformaticians who are develop-
ing a statistical analysis of experimental data for col-
laborators and who want to automate their analysis
in a user friendly way. Rwui may also be of use for
creating teaching applications.

Rwui may be found at http://rwui.cryst.bbk.ac.uk

Introduction

R is widely used in the field of bioinformatics.
The Bioconductor project (Gentleman et al., 2004)
contains R packages specifically designed for this
field. However many potential users of bioinfor-
matics programs written in R come from a non-
bioinformatics background and are unfamiliar with
the language. One solution to this problem is to pro-
vide user-friendly web interfaces for R scripts. Val-
ues for variables and data files for processing are en-
tered by the user on a web form. The application
then runs the R script on a server, out of sight of
the user, and returns the results of the analysis to the
user’s web page.

A web interface for an R script means that the
script can be used by anyone, even if they have no
knowledge of R. Because the web interface runs on
a server the application can be accessed remotely so
the user does not need to have R installed on their
machine. And updates to the script need only be
made to the copy on the server.

Rwui (R Web User Interface) is a web application
that creates web applications for running R scripts.
Code for the web application is generated automati-
cally so that a fully functional web interface for an R
script can be implemented in a matter of minutes.

The completed web applications run on Tomcat
servers. Tomcat is a free and widely used server soft-
ware, obtainable from http://tomcat.apache.org/
and easy to install on both Unix and Windows ma-
chines. If remote access to applications is not re-
quired, Tomcat can be installed on a stand-alone ma-
chine and web applications accessed in a browser on

the machine via the ‘localhost’ URL.

Using Rwui
The information that Rwui requires in order to create
a web application for running an R script is entered
on a sequence of forms. After entering a title and
introductory text for the application, the user selects
the input items that will appear on the application’s
web page. Input items may be Numeric or Text entry
boxes, Checkboxes, Drop-down lists, Radio Buttons,
File Upload boxes and a Multiple/Replicate File Up-
load page. Each of the input variables of the R script,
that is, those variables that require a value supplied
by the user, must have a corresponding input item
on the application’s web page.

Section headings can also be added if required.
Rwui displays a facsimile of the web page that the
user has created as items are added to the page.
Input items are given a number so that items can
be deleted and new items inserted between existing
items. After uploading the R script, Rwui generates
the web application which can be downloaded as a
zip or tgz file.

Once uncompressed the download contains the
complete application, including all the source code,
in a number of directories. All the files are included
for the benefit of anyone who would like to make
modifications of their own to the application. Nor-
mally however no modifications are necessary, in
which case only one of the files is required, namely,
the .war file in the ‘deploy’ directory.

The completed applications will run on a Tomcat
server. All that needs to be done to use the down-
loaded web application is to place the .war file in the
Tomcat ‘webapps’ directory. In addition, the file per-
missions of an included shell script must be changed
to executable.

An application description file is included in the
download. This is useful if the application requires
modification at a later date. The details of the appli-
cation can be re-entered automatically into Rwui by
uploading the application description file. The ap-
plication can then be edited and rebuilt within Rwui.
Alternatively, since the application description file is
written in XML, an existing application can be mod-
ified by editing the XML, prior to uploading the file
to Rwui for rebuilding.

If modifications are required which involve
changes to the application’s source code, for example
changing the format of the Results page, the down-
load contains an Ant script (http://ant.apache.org/)
for rebuilding and redeploying the application.

1

http://rwui.cryst.bbk.ac.uk
http://tomcat.apache.org/
http://ant.apache.org/

RWUI: A WEB APPLICATION TO CREATE USER FRIENDLY WEB INTERFACES FOR R SCRIPTS

System Requirements

In order to use the web applications created by Rwui
a machine is required with Tomcat version 5.0 or
later, Java version 1.5 and an R version compatible
with the R script(s).

Ant will be needed if changes are to be made to
the downloaded application and the Ant script, in-
cluded in the download, is used for rebuilding. Al-
though a server running a Unix operating system
is preferable, the completed applications will work
without modification on a Tomcat server running
Windows XP.

Using applications created by Rwui

A demonstration application created by Rwui can be
accessed or downloaded via links on the ‘Help’ page
of Rwui.

Applications created by Rwui can include a lo-
gin page. Access can be controlled either by a single
password, or by username/password pairs.

If a Multiple/Replicate File upload page is in-
cluded in an application created by Rwui then the
application consists of two web pages on which the
user enters information. On the first web page the
user uploads multiple files one at a time. Once
completed, a button takes the user to a second web
page where singleton data files and values for all
other variables are entered. The ‘Analyse’ button
on this page submits the values of variables, up-
loads any data files and runs the R script. If a Mul-
tiple/Replicate File upload page has not been in-
cluded in an application, then the application con-
sists of this second web page only.

During an analysis the application first checks
the validity of the values that the user has entered
and returns an error message to the page if any
are invalid. Only numeric values or NA can be
entered into Numeric entry boxes. Numeric, Text
and File Upload boxes cannot be left blank. Multi-
ple/Replicate Files must be unique, that is, the same
file cannot be entered more than once.

When creating the application validation may be
turned off, although this is not recommended. There
is also the option of setting up parent-child linking of
validation. Child input items can be linked with par-
ent radio buttons and/or checkboxes. In the com-
pleted web application, if a parent radio button or
check box is not ‘ticked’ then its child input items are
ignored and won’t cause validation problems if they
are currently empty.

On completion of the analysis, a link to a Results
page appears at the bottom of the web page. The user
can change data files and/or the values of any of the
variables and re-analyse, and the new results will ap-
pear as a second link at the bottom of the page, and
so on. Clicking on a link brings up the Results page

for the corresponding analysis. The layout of these
pages works best in browsers other than Internet Ex-
plorer which always puts scrollbars around text files,
whatever their size, and won’t display png images.

The user can download individual results files by
clicking on the name of the appropriate file on a Re-
sults page. Alternatively, each Results page also con-
tains a link which will download all the results files
from the page and the html of the page itself. In this
way the user can view offline saved Results pages
with their associated results files.

Structure of the applications cre-
ated by Rwui

Rwui creates Java based applications that use the
Apache Struts framework. Struts is an open source
and popular Java based framework for constructing
web applications.

The Apache Struts framework separates the three
main components of a web application; the View (the
way in which information is presented to the user),
the Controller (controlling the flow of the applica-
tion) and the Model (the data processing). This pro-
duces a web application that is well-organised, stable
and extensible.

In web applications created by Rwui, the Model
part of the application, a Java program, passes the
information entered by the user on the application’s
web pages to the R script and then runs the script.
The application waits for the script to finish and then
displays the results on the web page. If the script
takes some time to run, the web application can dis-
play progress information for the user.

Running the R script

The R script is run using R batch mode. The batch
command is placed in a shell script.

#!/bin/sh

R CMD BATCH -slave -no-restore -no-save $1 $2

The shell script is run as a Process using the ap-
plication’s instance of the Runtime class.

Runtime r = Runtime.getRuntime();

String cmd = "shell_script " +

"Rscript.R " + "Rscript.Rout";

Process p = r.exec(cmd);

p.waitFor();

The Runtime class allows a Java application to in-
terface with the environment in which it is running.
A Java application has one instance of this class. The
Process class has a method waitFor() that causes
the current thread to wait until the Process has com-
pleted.

2

RWUI: A WEB APPLICATION TO CREATE USER FRIENDLY WEB INTERFACES FOR R SCRIPTS

Passing values to the R script

Before the R script is run the values of the variables
that the user entered on the web pages are passed
to the R script. To do this the application writes the
variables and their values, as R assignments, into a
text file which is concatenated with the main R script
prior to execution:

Numeric entry box If, for example, an R script vari-
able named my_num was associated with a Numeric
entry box when the application was created with
Rwui, and the user of the completed application en-
ters the number 1234 into this Numeric entry box,
then the line my_num = 1234 will be added automat-
ically to the beginning of the R script prior to execu-
tion.

Text entry box Similarly for a Text entry box; if,
for example, an R script variable named my_text

was associated with a Text entry box and the user
of the completed application enters hello in this
box, then the application will automatically add the
line my_text = "hello" to the beginning of the R
script. Drop-down lists, Radio buttons and Check-
boxes work in a similar fashion except the choices
available to the user have been pre-defined when the
application was created with Rwui.

File upload box These are dealt with in a simi-
lar fashion. If, for example, an R variable named
my_data_file was associated with a File upload
box when the application was created, then the
completed web application will assign the name of
the file that the user uploads with this File up-
load box, to the R variable my_data_file. For ex-
ample, if the user uploads a file named data.txt,
then the application will automatically add the line
my_data_file = "data.txt" to the beginning of
the R script prior to execution. An important point
to note is that the application does not add a line
to the script to actually read the file into R. The
R script uploaded when the application was cre-
ated with Rwui, must include code to read the data
file(s). In this example the R script needs to include
a line to read the file whose name is stored in the
R variable my_data_file, for example, my_data =

scan(file=my_data_file). When the file data.txt
is uploaded from the web page it will be stored in the
correct working directory on the server, so no path to
the file is required.

Multiple/Replicate File upload box The com-
pleted web application will assign to the R vari-
able associated with a Multiple/Replicate File
upload page, in the form of a list, the names
of the files that the user uploads with this
page. For example, if the user uploads three

files called, replicate1.txt, replicate2.txt

and replicate3.txt and the R variable asso-
ciated with the page is my_data_replicates

then the application will automatically add the
line my_data_replicates = c("replicate1.txt",

"replicate2.txt", "replicate3.txt") to the be-
ginning of the R script prior to execution. But, as
explained in the previous paragraph about the File
upload box, the application does not add any lines
to the script to actually read the files into R. In this
example, the R script, uploaded when the applica-
tion was created with Rwui, needs to include code to
read the files whose names are stored in the variable
my_data_replicates.

Multiple/Replicate File upload pages may op-
tionally contain a text box for specifying the group
that each of the multiple/replicate files belongs to.
If the page includes a group text box then the com-
pleted application will automatically add a further
line to the beginning of the R script prior to ex-
ecution. This line assigns to a variable named
‘groups’, in the form of a list, the group names
that the user enters in the box. For example, if
the user entered control in the text box when sub-
mitting replicate1.txt, diseased when submit-
ting replicate2.txt and diseased when submit-
ting replicate3.txt, then the application will au-
tomatically add the line groups = c("control",

"diseased", "diseased") to the beginning of the R
script.

Displaying the results

Each time the analyse button is pressed a uniquely
named working directory is created on the server. In
order to pass the results generated by the R script
back to the web page, the R script writes the results
to files in this directory. On completion of the R script
the web application looks at what files have been
produced and lists them on the Results page as links,
which the user can click on to view and/or down-
load. The application also uploads any data files for
processing into this directory which means that these
files will also be listed as links on the Results page,
giving the user the opportunity to check that the cor-
rect data has been submitted and has been uploaded
correctly.

Optionally the contents of some or all of the re-
sults files can be dislayed on the Results page straight
away, to save the user the trouble of having to click
on a link. The names of the results files that are to
be displayed are pre-defined when the application is
created with Rwui. Files which are to be displayed in
this way must end in either .txt or, for images, .png or
.jpg. Internet Explorer won’t display png’s, so jpg’s
will be necessary if the completed application may
be accessed with Internet Explorer.

3

BIBLIOGRAPHY BIBLIOGRAPHY

SessionListener

Every time a new analysis is performed, any data
files will be copied to the new working directory,
even if the data files have not changed between anal-
yses. If the user presses the ‘Clear Page’ button then
their current working directory and all the work-
ing directories from their previous submissions are
deleted from the server. But if the user exits the
application by closing the browser window without
pressing the ‘Clear Page’ button, then these directo-
ries and their contents will remain on the server. To
prevent the server from becoming clogged with data,
the completed web application includes a SessionLis-
tener. The SessionListener detects when a session is
about to expire. This usually occurs 30 minutes from
when the session was last accessed, but the session
timeout can be changed in the Tomcat server configu-
ration if required (in the ‘Default Session Configura-
tion’ section of the file ‘tomcat.home/conf/web.xml’).
On detecting a session expiring the SessionListener
removes all the working directories created dur-
ing the session from the server. The SessionLis-
tener can be turned off by commenting out the rel-
evant section in the file ‘application.home/web/WEB-
INF/web.xml’.

Progress information

Optionally the completed application can dis-
play progress information for the user while
the R script is running. If progress informa-
tion is required then the R script, uploaded
when the application was created with Rwui,
must append information to a text file, called
‘process_info.txt’, at stages during its execution
(for example: capture.output(expr = rma(data),

append=TRUE, file="process_info.txt")). This
text file is displayed for the user by a JavaScript
pop-up window which refreshes at fixed intervals.
This feature will only work if the user’s browser has
JavaScript enabled.

JavaScript is also used to disable the analyse but-
ton while the R script is running, in order to prevent
multiple submissions. However applications created
by Rwui also use a synchronizer token based method
(Guay, 2003) to ensure multiple submissions are not
possible, even when JavaScript is turned off.

Validation and error messages

The web application validates data as it is entered
by the user and if necessary, returns error messages
to the web page. Errors that occur whilst the R pro-
gram is running are also displayed. The R options
command is automatically set at the beginning of the
script so that if an error occurs the error message
is written to a text file. The web application checks
this file when the Process terminates and if it is not

empty, displays the message on the web page.

R script Requirements

An R script requires a few simple modifications in or-
der to be run by a web application created by Rwui:

• The input variables of the R script must be
named according to the rules of both R and
Java variable naming. The input variables are
those variables that require a value supplied by
the user, so correspond to an input item on the
application’s web page. Their names may only
contain letters from the alphabet, $ and under-
score. The names must start with a letter of the
alphabet, which needs to be lower-case. If the
second character in the variable name is a letter
then it must also be lower-case.

(If the input variables of an existing R script
are incorrectly named then, rather than change
them all, it may be simpler to add reassign-
ments at the beginning of the script. For ex-
ample, if an R script requires a value for a
variable named MY.input.variable then, when
creating the application with Rwui, associate
my_input_variable, rather than the incor-
rectly named MY.input.variable, with the in-
put item on the web page. Then add the line
MY.input.variable = my_input_variable

at the beginning of the R script, prior to up-
loading the script to Rwui).

Those variables in the R script that are not in-
put variables do not need to conform to the
rules of Java variable naming.

• The R script must not set the working directory.

• Any results to be made available to the user
must be written to files. If the files are to be dis-
played, rather than just downloaded from the
Results page, they must be suffixed with either
.txt or, for images, .png or .jpg.

• If progress information is to be displayed, the
R script needs to periodically append lines to
a file (‘process_info.txt’) with messages for the
user.

Bibliography

R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bol-
stad, M. Dettling, S. Dudoit, B. Ellis, L. Gau-
tier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn,
W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li,
M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith,
G. Smyth, L. Tierney, J. Y. H. Yang, and

4

BIBLIOGRAPHY BIBLIOGRAPHY

J. Zhang. Bioconductor: Open software de-
velopment for computational biology and bioin-
formatics. Genome Biology, 5:R80, 2004. URL
http://genomebiology.com/2004/5/10/R80

R. Guay. Protect web application control flow, 2003.
URL http://www.javaworld.com/javatips/

jw-javatip136_p.html/

School of Crystallography
Birkbeck College
University of London
r.newton@mail.cryst.bbk.ac.uk

l.wernisch@mail.cryst.bbk.ac.uk

5

http://genomebiology.com/2004/5/10/R80
http://www.javaworld.com/javatips/
jw-javatip136_p.html/

	Rwui: A web application to create user friendly web interfaces for R scripts
	Running the R script
	Passing values to the R script
	Displaying the results
	SessionListener
	Progress information
	Validation and error messages

