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1. Abstract

Inspired by biological models, researchers in a variety of fields are applying 
neural network models to solve problems that so far have not been solvable using 
Von Neumann’s architecture. The aim of the project is to perform a comparative 
study of some of the existing Neural Network models available for Classification. 
For the purpose of comparing a standard problem of “Classifying Iris Flowers” is 
used. 

2. Neural Networks an Introduction

Artificial Neural Networks, which are also referred to as neural computation, 
network computation, connectionist models and parallel distributed processing 
(PDP), are massively parallel computing systems consisting of an extremely large 
number of processors with many inter-connections between them. ANNs were 
designed with the goal of building “intelligent machines” to solve complex 
problems, such as pattern recognition and classification. It also allows us an 
insight to the workings of the human brain, thus enabling us to test various 
hypotheses about the brain.

Thus ANN is an information processing system that has certain performance 
characteristics in common with biological neural networks. ANN have been 
developed as generalizations of mathematical models of human cognition or 
neural biology, based on the assumptions that:

1. Information processing occurs at simple elements called neurons
2. Signals are passed between neurons over connection links
3. Each connection link has an associated weight, which in a typical neural 

net multiplies the signal transmitted
4. Each neuron applies an activation function (usually non-linear) to its net 

input (sum of weighted input signals) to determine its output signal

A neural network is characterized by the following:

1. Its pattern of connections between the neurons (called its architecture)
2. Its method of determining the weights on the connections (called its 

training, or learning, algorithm)



3. Its activation function

Architecture:

A neural net consists of a large number of simple processing elements called 
neurons, units, cells or nodes. Each neuron is connected to other neurons in links 
which have a weight associated with them. The weights represent the information 
being used by the network to solve the problem. Thus based on the problem we 
are trying to solve the interconnections and the weights associated vary. The 
initial assignment of weights is a topic of important discussion, as the closer the 
initial weights are to the final weights the faster the network is trained and ready 
to use.

Training and Activation:

Each neuron has an internal state called the activation level, which is a function 
of the inputs it has received. Typically a neuron sends its activation as a signal to 
several neurons in the next layer. The neurons can send only one signal but the 
signal may be broadcasted. The activation function of a neuron Y is given by 
some function of its net input, for eg the Log-Sigmod function or any of the other 
activation functions. 

The presence of a hidden layer often enables the neural network to solve more 
problems than those solved by a net with simple inputs and outputs. As an aside 
such networks are harder to train. 

3. Biological Inspiration 

The neuron -the atomic element, the essence of life, is the fundamental unit of 
computation for the human brain1. A schematic diagram of the neuron is shown 
in Fig 1. A neuron consists of a cell body or soma and two types of out-reaching 
tree-like branches: axon and dendrites. The cell body has a nucleus that contains 
the hereditary information and plasma containing molecular equipment for the 
production of material needed by the neuron. A neuron receives signals from 
other neurons through its dendrites, and transmits signals generated by its cell 
body along the axon(transmitter) which eventually branches into strands and sub 
strands. At the terminals of these strands are the synapses. A synapse is a place 
of contact between two neurons (between an axon and dendrite of two neurons). 
When the impulse reaches the synapse’s terminal, certain chemicals, called 
neurotransmitters are released. The neurotransmitters diffuse across the gap and 
their role is to either inhibit or enhance, depending on the type of the synapse, 
the receptor neurons own tendency to emit electrical impulses. The effectiveness 

                                                
1

The introduction of neurons as fundamental constituents of the nervous system was credited to Ramon y Cajal  who won the 1906 
Nobel Prize for physiology and medicine.



of a synapse can be adjusted by the signals passing through it so that synapses 
can learn from the activities which they take part in. 

Fig 1. A neuron

4. Neural Network Architectures

An assembly of neurons is called a neural network. ANNs can be viewed as 
weighted graphs in which nodes are neurons and directed edges are connections 
from output neurons to input ones. Shown in Fig 3- taxonomy of neural network 
architectures or topologies.

The first ever proposed Neural Network model was the McCulloch and Pitt’s 
model. They proposed a binary threshold unit as a computational model for a 
neuron. A schematic representation of the model is shown in Fig 2.

Fig 2- A McCulloch and Pitt’s model 

The mathematical model computed a weighted sum of its input. If the output was 
above a threshold value then it declared the output to be “1” otherwise the output 
was “0”. 

Y =  ( wj xj -  )

Where  is the unit step function and wj is the synapse weight associated with the 
jth input. Positive weights correspond to excitatory synapses and negative 
weights correspond to inhibitory synapses. 



Fig 3. Taxonomy of neural network architectures

5. Classification and Neural Networks

Classification is the process by which we separate or segregate each input vector 
to a particular group or category. Neural Networks have played an increasingly 
significant role in the process of classification. Here a few of the architectures 
used for classification are explained.

  

6. HEBB NET

The earliest and simplest learning rule for a neural net is generally known as the 
Hebb rule. Hebb proposed that learning occurs by modification of the synapse 
strengths in a manner such that if two interconnected neurons are both “on” at 
the same time, then the weight between those neurons should be increased. A 
stronger learning occurs if we also increase the weights if both neurons are “off”. 

Algorithm

1. Initialize all the weights wi=0 (i=1 to n)
2. For each input training vector and target output pairs, s:t, do steps 3-5
3. Set activation for input units  xi=si (i=1 to n)
4. Set activation for output units y=t



5. Adjust the weights for
Wi(new) = wi(Old) + xi y
Adjust the bias
b(new)  = b(old) + y

Hebb Nets are used to classify 2-d input patterns very easily. Thus it is used for 
character recognition and other such applications. Hebb Nets cannot learn any 
pattern for which the target is 0. So targets must be converted at least to a bipolar 
form so to say. The Hebb faces difficulties classifying certain problems if bipolar 
patterns are employed.

7. PERCEPTRON

Perceptrons had perhaps the most far-reaching impact of any early neural nets. 
The perceptron learning rule is more powerful than the Hebb rule. Under suitable 
conditions its iterative learning algorithm can be shown to converge to the correct 
weights. A number of different types of perceptrons are described in 
Rosenblatt(1962). Although some were self-organizing maps, most were trained. 
Typically, the original perceptrons had three layers of neurons- sensory units, 
associator units and a response unit- forming an approximate model of a retina. 
One particular simple perceptron is as described. It consisted of binary 
activations for the sensory and associator units. The response unit employed the 
use of  +1,0 and –1. 

The output of a perceptron is y = f(y_in), where the activation function is

1      y_in > 
 f(y_in) = 0      - <= y_in <=  

           -1      y_in< -

The net did not distinguish between an error in which the calculated output was 
zero and the target –1, as opposed to an error in which the calculated output was 
+1 and the target –1. In either of these cases, the sign of the error denotes that the 
weights should be changed in the direction indicated by the target value. 
However, only the weights on the connections from units that sent a non-zero 
signal to the output unit would be adjusted (since only these signals contributed 
to the error). If an error occurred for a particular training input pattern, the 
weights be changed according to the formula

Wi(new) = Wi(old) + tXi

Where the target value t is +1 or –1 and  is the learning rate. If an error did not 
occur, the weights would not be changed. Training would continue until no error 
occurred. The perceptron learning rule convergence theorem states that if 
weights exists to allow the net to respond correctly to all the training patterns, 



then the rule’s procedure for adjusting the weights will find values such that the 
net respond correctly to all training patterns.

Algorithm:

1. Initialize the weights and bias
   (For learning, set weights and bias to zero)
    Set learning rate  (0<=  <= 1)

(For simplicity,  can be set to 1)

2. While stopping condition is false, do steps 3-7

3. For each training pair s:t, do steps 4-6

4. Set activations of input units:
 Xi = Si

5. Compute Response of output unit:
y_in = b +  Xi Wi ;

1      y_in > 
 f(y_in) = 0      - <= y_in <=  

           -1      y_in< -

6. Update weights and bias if an error occurred for this pattern
If y != t

Wi(new)  = Wi(old)  + tXi
B(new)    = B(old) + t

      Else

Wi(new)  = W(old)
B(new)    = B(old)

7. Test Stop Conditon

The limitation of the Perceptron Convergence Rule is that it is applicable only to 
linearly separable problems. But on employing Gaussian Functions the 
perceptron may solve non-linear problems. 



8. ADALINE Learning Algorithm

Widrow and Hoff proposed the ADALINE or Adaptive Linear Neuron, 1960. It 
typically uses bipolar (1 or –1) activations for its input signals and its target 
output (although it is not restricted to such values). The weights on the 
connections from the input units to the ADALINE are adjustable. The ADALINE 
also has a bias, which acts like an adjustable weight on a connection from a unit 
whose activation is always 1. 

In general, an ADALINE can be trained using the delta rule, also known as the 
Least Mean Squares or Widrow-Hoff rule. The rule can also be used for single 
layer nets with several output units. The ADALINE is a special case in which 
there is only one output unit. During training, the activation of the unit is its net 
input, i.e., the activation function is the identity function. The learning rule 
minimizes the mean squared error between the activation and the target value. 
This allows the net to continue learning on all training patterns; even after the 
correct output value is generated for some patterns.

When ADALINE’s are used for pattern classification where the output is either a 
+1 or –1, a threshold function is applied to the input to obtain the activation. If 
the net input to the ADALINE is greater than or equal to 0, then its activation is 
set to 1; otherwise it is set to –1. Any problem for which the input patterns 
corresponding to the output value +1 are linearly separable from input patterns 
corresponding to the output value –1, an ADALINE unit can model the problem 
successfully. 

Algorithm:

1. Initialize the weights and bias
   (Small random values are usually used)
    Set learning rate  (0<=  <= 1)

(See comments following algorithm)

2. While stopping condition is false, do steps 3-7

3. For each bipolar training pair s:t do steps 4-6

4. Set activations of input units, i=1…n
Xi = Si,

5. Compute net input to output unit:
  y_in= b +  Xi Wi
6. Update bias and weights, i=1…n

B(new)  =B(old)   +  (t- y_in),
Wi(new)=Wi(old) +  (t- y_in)Xi

7. Test for stopping condition



Setting the learning rate to a suitable value requires some care. According to 
Hecht-Nielsen (1990), an upper bound for its value can be found from the eigen 
value of the correlation matrix R of the input (row) vectors x(p):

R= (1/P )* (   X(p)T X(p) )  For ,p = 1…P 

 < one-half the largest eigen value of R
Usually  is taken to be a value such as 0.1 initially. The proof of the ADALINE 
training process is contained in the derivation of the delta rule.

9. MADALINE Learning Algorithm

As mentioned earlier, a MADALINE consists of Many Adaptive Linear Neurons 
arranged in a multi layer net. The problems solvable by the perceptron and the 
derivation rule for several output units both indicate there is essentially no 
change in the process of training if several ADALINE units are combined in a 
single-layered net. In this section we will discuss the MADALINE.

The MRII training algorithm of the MADALINE

Algorithm:

1. Initialize weights
   Set the learning rate 
   While Stopping condition is false, do steps 2-8

2. For each bipolar training pair, s:t, do steps 3-7
3. Set the input units

Xi = Si
4. Compute net input to each hidden ADALINE unit

z_in1 = b1 + x1 w11 + x2 w21,
z_in2 = b2 + x1 w12 + x2 w22
.
.
.

5. Determine the output of each hidden ADALINE unit
z1=f(z_in1)
z2=f(z_in2)
.
.
.

6. Determine the output of net:
y_in = b3 + z1v1 + z2v2
y = f(y_in)

7. Determine error and update weightsl



    If t=y, no weight updates are performed.
   Otherwise:
   If t != y, do steps 7 (a) & (b) for each hidden unit whose net input is 

sufficiently    close to 0. Start with the unit closest to 0 then the next one…
     7(a)  Change the unit’s output 

7(b)  Re compute the response of the net
         If the error is reduced:
         Adjust the weights on this unit

8. Test stopping condition

10. BACK PROPOGATION Algorithm

The demonstration of the limitations of single layer neural network was a single 
significant factor in the decline in interest in neural networks in the 1970’s. The 
discovery (by several researchers independently) and widespread dissemination f 
an effective general method of training a multi layer neural network[Rumelhart, 
Hinton & Williams, 1986a, 1986b]. 

The very general nature of the back propagation training method means that a 
back propagation net (a multi layer, feed forward net trained by back 
propagation) can be used to solve problems in many areas.  

The training of a network by back propagation involves three stages: the feed 
forward of the input training pattern, the calculation and back propagation of the 
error and the adjustment of weights. Although a single layer net can learn it is 
severely limited in its mapping. A multi layered net can be mapped to solve any 
problem up to any arbitrary accuracy.

Fig 4  A Multi layer perceptron with back propagation training

Algorithm:

1.  Initialize weights
2.  While Stopping condition if false, do steps 3-10
3.  For each training pair, do steps 4-9
     Feed Forward
4. Each Input unit (Xi ,i=1…n) receives input signal xi and broadcasts this 

signal to all units in the hidden layer above it



5. Each hidden unit (Zj, j=1…p) sums its weighted input signals
Z_in j = v0j +  xi vij ,
Applies its activation function to compute its output signal
Zj = f(z_in j)
And sends this signal to all units in the layers above

6. Each output unit (Yk, k=1…m) sums its weighted input signals,
Y_in k = w0k +  zj wjk
Applies its activation function to compute its output signal
Yk = f(y_in k)

        BACK PROPAGATION OF ERROR       
7. Each output unit (Yk, k=1…m) receives a target pattern corresponding to 

the input training pattern, computes its error information term

k = (tk – yk) f(y_in k)
calculates its weight correction term used to update wjk later
w jk  =  k Zj
calculates its bias correction term used to update w0k later
w 0k  =  k
and sends k to units in the layer below

8. Each hidden unit (Zj, j =1…p) sums its delta inputs (from units in the 
layer above)

_inj =  k wjk
multiplies by the derivative of its activation function to calculate its error 
information term

j = _inj f(z_in  )
calculates its weight correction term (used to update vij later)

v ij  =  k xi
and calculates its bias correction term(used to update v0j later)
v 0j  =  j

9. Update weights and biases:
Each output unit (Yk, k=1…m) updates its bias and weights (j =0…p)
W jk(new) = Wjk(old) +  Wjk

Each hidden unit (Zj, j=1…p) updates its bias and weights (i=0…n)
Vij(new) = Vij(old) +  Vij

      10.  Test Stopping Condition



The mathematical basis for the back propagation algorithm is the optimization 
technique known as gradient descent. The gradient of a function (in this case, the 
function is the error and the variables are the weights of the net) gives the 
direction in which the function increases more rapidly; the negative of the 
gradient gives the direction in which the function decreases more rapidly.

Initialization can be done randomly there are many procedures for this. A 
common procedure is to initialize the weights (and biases) to random values 
between –0.5 and 0.5 or some other suitable interval. The Nguyen-Widrow 
initialization makes simple modifications to the common random weight 
initialization. The approach is based on a geometrical analysis of the response of 
the hidden neurons to a single input.

Shown below are training graphs of Performance vs Epochs for few of the 
networks implemented. The training pairs, number of epochs and performance 
requirements have been varied and experimented with. The change in the 
number of hidden layers poses an interesting case. It follows the standard bell 
curve for performance, i.e. when the number of layers is just less the performance 
increases on increasing the number of layers, but after a saturation point increase 
in the number of layers inhibits performance. 

The graphs shown below are graphs of Performance vs Epochs of networks used 
to solve the Iris Flower Classification Problem. Inputs of 50 flowers of each type 
were entered, totaling to 150. The three classes of flowers were Setosa, Versi 
Color and Virginica. Four parameters were chosen based on statistical studies for 
identifying the class. These were the 1) Sepal Length 2) Sepal Width 3) Petal 
Length 4) Petal Width. The values of these parameters for 150 flowers were 
entered as the input and their corresponding classes were normalized and taken 
as outputs. After the training was performed, each of the networks was tested 
with separate test data kept aside for the simulation. 



Fig 4. Training with the Cascade Feed Forward Network using trainlm function

Fig 5. Training with the Cascade Forward Network using the trainbfg function

Fig 6 Training with Feed forward network using traingd function



Fig7  Training with the Elman Backward Propagation Algorithm using trainlm function

Fig 8. Training with the Elman Backward Propagation Algorithm using the traingd function

11. CONCLUSION

The report consists only few of the existing networks. Radial Basis Function, 
Linear Vector Quantization and other models have not been discussed in this 
short document. The following is a summary of the various networks, the training 
algorithms they are used with and their applications.



Fig 9. Well known learning algorithms
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