Classification using Artificial Neural Networks
- A study

By
Mayur
Mudigonda

1. Abstract

Inspired by biological models, researchers in a variety of fields are applying
neural network models to solve problems that so far have not been solvable using
Von Neumann’s architecture. The aim of the project is to perform a comparative
study of some of the existing Neural Network models available for Classification.
For the purpose of comparing a standard problem of “Classifying Iris Flowers” is
used.

2. Neural Networks an Introduction

Artificial Neural Networks, which are also referred to as neural computation,
network computation, connectionist models and parallel distributed processing
(PDP), are massively parallel computing systems consisting of an extremely large
number of processors with many inter-connections between them. ANNs were
designed with the goal of building “intelligent machines” to solve complex
problems, such as pattern recognition and classification. It also allows us an
insight to the workings of the human brain, thus enabling us to test various
hypotheses about the brain.

Thus ANN is an information processing system that has certain performance
characteristics in common with biological neural networks. ANN have been
developed as generalizations of mathematical models of human cognition or
neural biology, based on the assumptions that:

1. Information processing occurs at simple elements called neurons

2. Signals are passed between neurons over connection links

3. Each connection link has an associated weight, which in a typical neural
net multiplies the signal transmitted

4. Each neuron applies an activation function (usually non-linear) to its net
input (sum of weighted input signals) to determine its output signal

A neural network is characterized by the following:
1. Its pattern of connections between the neurons (called its architecture)

2. Its method of determining the weights on the connections (called its
training, or learning, algorithm)



3. Its activation function

Architecture:

A neural net consists of a large number of simple processing elements called
neurons, units, cells or nodes. Each neuron is connected to other neurons in links
which have a weight associated with them. The weights represent the information
being used by the network to solve the problem. Thus based on the problem we
are trying to solve the interconnections and the weights associated vary. The
initial assignment of weights is a topic of important discussion, as the closer the
initial weights are to the final weights the faster the network is trained and ready
to use.

Training and Activation:

Each neuron has an internal state called the activation level, which is a function
of the inputs it has received. Typically a neuron sends its activation as a signal to
several neurons in the next layer. The neurons can send only one signal but the
signal may be broadcasted. The activation function of a neuron Y is given by
some function of its net input, for eg the Log-Sigmod function or any of the other
activation functions.

The presence of a hidden layer often enables the neural network to solve more
problems than those solved by a net with simple inputs and outputs. As an aside
such networks are harder to train.

3. Biological Inspiration

The neuron -the atomic element, the essence of life, is the fundamental unit of
computation for the human brain!. A schematic diagram of the neuron is shown
in Fig 1. A neuron consists of a cell body or soma and two types of out-reaching
tree-like branches: axon and dendrites. The cell body has a nucleus that contains
the hereditary information and plasma containing molecular equipment for the
production of material needed by the neuron. A neuron receives signals from
other neurons through its dendrites, and transmits signals generated by its cell
body along the axon(transmitter) which eventually branches into strands and sub
strands. At the terminals of these strands are the synapses. A synapse is a place
of contact between two neurons (between an axon and dendrite of two neurons).
When the impulse reaches the synapse’s terminal, certain chemicals, called
neurotransmitters are released. The neurotransmitters diffuse across the gap and
their role is to either inhibit or enhance, depending on the type of the synapse,
the receptor neurons own tendency to emit electrical impulses. The effectiveness

! The introduction of neurons as fundamental constituents of the nervous system was credited to Ramon y Cajal who won the 1906
Nobel Prize for physiology and medicine.



of a synapse can be adjusted by the signals passing through it so that synapses
can learn from the activities which they take part in.

Dlendrites,

=

Figl A neuron

4. Neural Network Architectures

An assembly of neurons is called a neural network. ANNs can be viewed as
weighted graphs in which nodes are neurons and directed edges are connections
from output neurons to input ones. Shown in Fig 3- taxonomy of neural network
architectures or topologies.

The first ever proposed Neural Network model was the McCulloch and Pitt’s
model. They proposed a binary threshold unit as a computational model for a
neuron. A schematic representation of the model is shown in Fig 2.

o Wy
_ .
e e — )
s -
' ’
L] 'T! . k o =
in

Fig 2- A McCulloch and Pitt’s model

The mathematical model computed a weighted sum of its input. If the output was
above a threshold value then it declared the output to be “1” otherwise the output
was “0”.

Y=0XZwjx- W
Where 0 is the unit step function and wj is the synapse weight associated with the

jth input. Positive weights correspond to excitatory synapses and negative
weights correspond to inhibitory synapses.



| Meural Nemrorks

// M"'ﬂ-\. e
. s ——
_'- .-'/K/ \\'\-\. .':H \:‘I-x"".;-l =
r "y, i ""':&?
| - 1 I 1 - ﬁ_""’..-{'u -
Feedforward Nemworks Feedback/Recurrent -
_ ) Hetworks
N | | T
.-"'-' 1 - 4 '\-..___. --"--_
g -~ | ra \ S ——
Il - i & A T e
Single—layer Multzlayer Radial Basis Compefitve . e L id
e : - - QLR Kokonen's 50M Hepfield ART Models
Percepiron Percepmon | Fumction Nets Nemiorks | Metwork
. [
. [ - [ -
n o ﬁ
) - (5 R - - -
o Pt % '.I\}'
(0 O - —| -

Fig 3. Taxonomy of neural network architectures

5. Classification and Neural Networks

Classification is the process by which we separate or segregate each input vector
to a particular group or category. Neural Networks have played an increasingly
significant role in the process of classification. Here a few of the architectures
used for classification are explained.

Hemmad.
== ]
l’ [ i
o . ek \t e L
L s T s & -
+\\ ‘.-‘ ;;‘*—t_'," ¢?1‘;:‘.t o‘
ER ++"_'\, w '\.'!\__'lv' +t
RS + R
(a) (b)
6. HEBB NET

The earliest and simplest learning rule for a neural net is generally known as the
Hebb rule. Hebb proposed that learning occurs by modification of the synapse
strengths in a manner such that if two interconnected neurons are both “on” at
the same time, then the weight between those neurons should be increased. A
stronger learning occurs if we also increase the weights if both neurons are “off”.

Algorithm

Initialize all the weights wi=0 (i=1to n)

For each input training vector and target output pairs, s:t, do steps 3-5
Set activation for input units xi=si (i=1to n)

Set activation for output units y=t

PpwnE



5. Adjust the weights for
Wi(new) = wi(OId) + xiy
Adjust the bias
b(new) =b(old) +y

Hebb Nets are used to classify 2-d input patterns very easily. Thus it is used for
character recognition and other such applications. Hebb Nets cannot learn any
pattern for which the target is 0. So targets must be converted at least to a bipolar
form so to say. The Hebb faces difficulties classifying certain problems if bipolar
patterns are employed.

7. PERCEPTRON

Perceptrons had perhaps the most far-reaching impact of any early neural nets.
The perceptron learning rule is more powerful than the Hebb rule. Under suitable
conditions its iterative learning algorithm can be shown to converge to the correct
weights. A number of different types of perceptrons are described in
Rosenblatt(1962). Although some were self-organizing maps, most were trained.
Typically, the original perceptrons had three layers of neurons- sensory units,
associator units and a response unit- forming an approximate model of a retina.
One particular simple perceptron is as described. It consisted of binary
activations for the sensory and associator units. The response unit employed the
use of +1,0 and —1.

The output of a perceptron is y = f(y_in), where the activation function is

1 y.in>6
fly_in)= 0 -0<=y in<=90
-1y in<-0

The net did not distinguish between an error in which the calculated output was
zero and the target —1, as opposed to an error in which the calculated output was
+1 and the target —1. In either of these cases, the sign of the error denotes that the
weights should be changed in the direction indicated by the target value.
However, only the weights on the connections from units that sent a non-zero
signal to the output unit would be adjusted (since only these signals contributed
to the error). If an error occurred for a particular training input pattern, the
weights be changed according to the formula

Wi(new) = Wi(old) + atXi

Where the target value t is +1 or —1 and «a is the learning rate. If an error did not
occur, the weights would not be changed. Training would continue until no error
occurred. The perceptron learning rule convergence theorem states that if
weights exists to allow the net to respond correctly to all the training patterns,



then the rule’s procedure for adjusting the weights will find values such that the
net respond correctly to all training patterns.

Algorithm:

1. Initialize the weights and bias
(For learning, set weights and bias to zero)
Set learning rate o (O<=a <=1)
(For simplicity, o can be set to 1)

2. While stopping condition is false, do steps 3-7
3. For each training pair s:t, do steps 4-6
4. Set activations of input units:
Xi=Si
5. Compute Response of output unit:
y in=b+2X XiWi;
1 y.in>0

fly_inN)=0 -6<=y_in<= 6
-1y in<-6

6. Update weights and bias if an error occurred for this pattern
Ifyl=t

Wi(new) =Wi(old) + atXi
B(new) =B(old)+ at

Else

Wi(new) = W(old)
B(new) =B(old)

7. Test Stop Conditon
The limitation of the Perceptron Convergence Rule is that it is applicable only to

linearly separable problems. But on employing Gaussian Functions the
perceptron may solve non-linear problems.



8. ADALINE Learning Algorithm

Widrow and Hoff proposed the ADALINE or Adaptive Linear Neuron, 1960. It
typically uses bipolar (1 or —1) activations for its input signals and its target
output (although it is not restricted to such values). The weights on the
connections from the input units to the ADALINE are adjustable. The ADALINE
also has a bias, which acts like an adjustable weight on a connection from a unit
whose activation is always 1.

In general, an ADALINE can be trained using the delta rule, also known as the
Least Mean Squares or Widrow-Hoff rule. The rule can also be used for single
layer nets with several output units. The ADALINE is a special case in which
there is only one output unit. During training, the activation of the unit is its net
input, i.e., the activation function is the identity function. The learning rule
minimizes the mean squared error between the activation and the target value.
This allows the net to continue learning on all training patterns; even after the
correct output value is generated for some patterns.

When ADALINE's are used for pattern classification where the output is either a
+1 or —1, a threshold function is applied to the input to obtain the activation. If
the net input to the ADALINE is greater than or equal to O, then its activation is
set to 1; otherwise it is set to —1. Any problem for which the input patterns
corresponding to the output value +1 are linearly separable from input patterns
corresponding to the output value —1, an ADALINE unit can model the problem
successfully.

Algorithm:

1. Initialize the weights and bias
(Small random values are usually used)
Set learning rate o (O<=a <=1)
(See comments following algorithm)

2. While stopping condition is false, do steps 3-7
3. For each bipolar training pair s:t do steps 4-6

4. Set activations of input units, i=1...n
Xi =Si,

5. Compute net input to output unit:
y _in=b+ 3 Xi Wi

6. Update bias and weights, i=1...n
B(new) =B(old) + a(t-y_in),
Wi(new)=Wi(old) + a(t-y_in)Xi

7. Test for stopping condition



Setting the learning rate to a suitable value requires some care. According to
Hecht-Nielsen (1990), an upper bound for its value can be found from the eigen
value of the correlation matrix R of the input (row) vectors x(p):

R=(1/P)* (2" X(p)TX(p)) For 2p=1..P

o < one-half the largest eigen value of R

Usually a is taken to be a value such as 0.1 initially. The proof of the ADALINE
training process is contained in the derivation of the delta rule.

9. MADALINE Learning Algorithm

As mentioned earlier, a MADALINE consists of Many Adaptive Linear Neurons
arranged in a multi layer net. The problems solvable by the perceptron and the
derivation rule for several output units both indicate there is essentially no
change in the process of training if several ADALINE units are combined in a
single-layered net. In this section we will discuss the MADALINE.

The MRII training algorithm of the MADALINE
Algorithm:

1. Initialize weights
Set the learning rate o
While Stopping condition is false, do steps 2-8
2. For each bipolar training pair, s:t, do steps 3-7
3. Set the input units
Xi=Si
4. Compute net input to each hidden ADALINE unit
z_inl=Dbl+ x1wll +x2 w21,
z in2=Db2 + x1wl2 + x2 w22

5. Ijetermine the output of each hidden ADALINE unit
z1=f(z_inl)
z2=f(z_in2)

6. Determine the output of net:
y_in=Db3 + zlvl + z2v2

y =f(y_in)

7. Determine error and update weightsl



If t=y, no weight updates are performed.
Otherwise:
If t '=y, do steps 7 (a) & (b) for each hidden unit whose net input is
sufficiently close to O. Start with the unit closest to O then the next one...
7(a) Change the unit’'s output
7(b) Re compute the response of the net
If the error is reduced:
Adjust the weights on this unit
8. Test stopping condition

10. BACK PROPOGATION Algorithm

The demonstration of the limitations of single layer neural network was a single
significant factor in the decline in interest in neural networks in the 1970’s. The
discovery (by several researchers independently) and widespread dissemination f
an effective general method of training a multi layer neural network[Rumelhart,
Hinton & Williams, 1986a, 1986Db].

The very general nature of the back propagation training method means that a
back propagation net (a multi layer, feed forward net trained by back
propagation) can be used to solve problems in many areas.

The training of a network by back propagation involves three stages: the feed
forward of the input training pattern, the calculation and back propagation of the
error and the adjustment of weights. Although a single layer net can learn it is
severely limited in its mapping. A multi layered net can be mapped to solve any
problem up to any arbitrary accuracy.

AL

.\ ,
W 1 M
.

W A Bl b e Ay e

Fig 4 A Multi layer perceptron with back propagation training

Algorithm:

1. Initialize weights

2. While Stopping condition if false, do steps 3-10

3. For each training pair, do steps 4-9
Feed Forward

4. Each Input unit (Xi ,i=1...n) receives input signal xi and broadcasts this
signal to all units in the hidden layer above it



5. Each hidden unit (Zj, j=1...p) sums its weighted input signals
Z_inj=v0j+ 2xivij,
Applies its activation function to compute its output signal
Zj=1(z_inj)
And sends this signal to all units in the layers above

6. Each output unit (Yk, k=1...m) sums its weighted input signals,
Y_in k=wO0k + }'zj wjk
Applies its activation function to compute its output signal
Yk =f(y_in k)

BACK PROPAGATION OF ERROR

7. Each output unit (Yk, k=1...m) receives a target pattern corresponding to
the input training pattern, computes its error information term
o'Aa
ok = (tk — yk) f(y_in k)
calculates its weight correction term used to update wijk later
Aw Jk = a ok Zj
calculates its bias correction term used to update wOKk later
Aw Ok = a ok
and sends ok to units in the layer below

8. Each hidden unit (Zj, j =1...p) sums its delta inputs (from units in the
layer above)

o_inj =23 sk wijk
multiplies by the derivative of its activation function to calculate its error
information term

o=o_injf(z_in)
calculates its weight correction term (used to update vij later)

AVi] = o KXi
and calculates its bias correction term(used to update vOj later)
Av O] = J

9. Update weights and biases:
Each output unit (Yk, k=1...m) updates its bias and weights (j =0...p)
W jk(new) = Wjk(old) + AWjk
Each hidden unit (Zj, j=1...p) updates its bias and weights (i=0...n)
Vij(new) = Vij(old) + AVij

10. Test Stopping Condition



The mathematical basis for the back propagation algorithm is the optimization
technique known as gradient descent. The gradient of a function (in this case, the
function is the error and the variables are the weights of the net) gives the
direction in which the function increases more rapidly; the negative of the
gradient gives the direction in which the function decreases more rapidly.

Initialization can be done randomly there are many procedures for this. A
common procedure is to initialize the weights (and biases) to random values
between —0.5 and 0.5 or some other suitable interval. The Nguyen-Widrow
initialization makes simple modifications to the common random weight
initialization. The approach is based on a geometrical analysis of the response of
the hidden neurons to a single input.

Shown below are training graphs of Performance vs Epochs for few of the
networks implemented. The training pairs, number of epochs and performance
requirements have been varied and experimented with. The change in the
number of hidden layers poses an interesting case. It follows the standard bell
curve for performance, i.e. when the number of layers is just less the performance
increases on increasing the number of layers, but after a saturation point increase
in the number of layers inhibits performance.

The graphs shown below are graphs of Performance vs Epochs of networks used
to solve the Iris Flower Classification Problem. Inputs of 50 flowers of each type
were entered, totaling to 150. The three classes of flowers were Setosa, Versi
Color and Virginica. Four parameters were chosen based on statistical studies for
identifying the class. These were the 1) Sepal Length 2) Sepal Width 3) Petal
Length 4) Petal Width. The values of these parameters for 150 flowers were
entered as the input and their corresponding classes were normalized and taken
as outputs. After the training was performed, each of the networks was tested
with separate test data kept aside for the simulation.

Ferommancs & LLUJJEY 7, GHashis 10
1|-| T T T T T T T

zz}EB ack

-

Trai~ing-Elue 1

||:|- L 1 1 1 1 1 1
r o 1 f r r 17 14 15 3
Hlup Iruiuillgl “HLpachs



Fig 4. Training with the Cascade Feed Forward Network using trainlm function

. Futfurrran o i 0352579, Gl 2,04
i T . T

T-a ning-Blue - oal-Elack

1|'| d 1 1 1
r ir | sn 47 a1 Fr

Hlup Iruiuillgl i Lpochs
Fig 5. Training with the Cascade Forward Network using the trainbfg function

Fetlurrnan = i 00057148, Gua 002
1 T T T T T T T T

FElack

HER

inin=-B 1e 1

-

T-=
=]

¥
] 1 1 1 1 1 1 1 1
C CICC X003 33C0C 4007 53CC 002 FCOO0 8003 00 (o000

Slup Tr:dilliugl 1033C Zpu_- =
Fig 6 Training with Feed forward network using traingd function



Mzromnancs 50000 30233, Cos is 0,005
1|:| T T T T T T T T

oal-B ac =

ra ni--BElue |
—

1|:|' ' ' ' ' ' ' '
C ‘0 A0 310 400 330 |0 CC J00 9 033

Htop Tralning 1000 Epacaz

Fig7 Training with the EIman Backward Propagation Algorithm using trainlm function

o [erormatze is 005 1045, 1523] s 0,04

oa -Blsck

i’

rsin ng-Elu

||:|'2 1 1 1 1 1 1 1 1
| e N N A N N A R N AR RN AR IR R RN

§top Training TN —pn=-s

Fig 8. Training with the Elman Backward Propagation Algorithm using the traingd function

11. CONCLUSION

The report consists only few of the existing networks. Radial Basis Function,
Linear Vector Quantization and other models have not been discussed in this
short document. The following is a summary of the various networks, the training
algorithms they are used with and their applications.



Laarping Paradigm Laarning Ruls Architesturs Laarning Algorithm Task
Single- ar Farcaptron learning algarithms pattarn classification
Errar-correction Multi-layer Backpropsgation function spproximstion
Farceptron ADALINE & MADALINE contral
Supervised Beltzmeann Recurrent Beltemann Lesrning slgerithm pattern claspification
Habbian Mlulti-layer Linnas Diecriminant Analysis data snalysis
Fandforward pattarn classification
Competitive Loarning Vector Quantizstion nin-clase categorization
o patitive data compressicn
ART natwork ARTMAF pattarn classification
n-claze categorization
Errar-correction Mlulti-layer FSammon's projecticn data snalysis
Faadferwsrd
Peadforward FPrincipsl Component Anslysia data snalysis
Unsupervised Habkian ar CGompatitive data compressicn
Heopfield Nt Arrocistive memery learning azpcciative memery
Campatitive Vector Quantisation catagaTisation
data compressicn
Compatitive Kehonen SOM Kehonen's 30M categorization
data snalysis
ART networka ARTI, ART2 eategoTizatian
Hybrid Errar-correction REBF natwark REF Learming slgerithm pattern classification
and Competitive function approximation
contral
Fig 9. Well known learning algorithms




12. References:

1. Fundamentals of Neural Networks — Architectures, Algorithms and
Applications by Laurene Fausett, Pearson Education

2. Artificial Neural Networks : A Tutorial , Anil K Jain, Jianchang Mao and
K.Mohiuddin, IEEE Computer Special Issue on Neural Computing, March
1996

3. W.S. McCulloch and W.Pitts, a logical calculus of ideas immanent in
nervous activity. Bulletin of mathematical biophysics, 5:115-133, 1943

4. S.Haykin. Neural Networks: A comprehensive Foundation. MacMillan
College Publishing Company, New York, 1994

5. R.P.Lippman. An introduction to computing with neural nets. IEEE ASSP
Magazine, 4 (2): 4-22, Apr 1987

6. M.Minsky. Logical versus analogical or symbolic versus connectionist or
neat versus scruffy. Al Magazine, 65(2): 34-51, 1991

7. Tutorials from Mathworks Online ™



